机翼模型动力学行为的研究

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Lifang Cheng, Ming Liu, Dongpo Hu, Litao Zhang
{"title":"机翼模型动力学行为的研究","authors":"Lifang Cheng, Ming Liu, Dongpo Hu, Litao Zhang","doi":"10.1007/s44198-023-00152-2","DOIUrl":null,"url":null,"abstract":"Abstract Bifurcations of equilibria of a wing model have been investigated in this paper. It is shown that the quintic nonlinear terms in the pitch and the plunge coordinate have affected the bifurcation structure of nontrivial equilibria in different degree. In contrast with the quintic stiffening parameter in plunge, the quintic parameter in pitch has a relatively significant effect, which will affect the number, position and stability of nontrivial equilibria. Therein two pairs of nontrivial equilibria with opposite stability coexist or disappear by two fold bifurcations. If the freestream velocity has been taken as a continuation parameter, it will affect the bifurcation structure of all the equilibria, including the trivial and the nontrivial. Wherein the equilibria vary from a trivial to two nontrivial ones by a pitchfork bifurcation. Then one of nontrivial equilibria experiences a supercritical Hopf bifurcation and the bifurcated limit cycles form an ellipsoidal structure with the limit cycles bifurcated from the trivial equilibrium.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"52 16","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Dynamical Behavior of a Wing Model\",\"authors\":\"Lifang Cheng, Ming Liu, Dongpo Hu, Litao Zhang\",\"doi\":\"10.1007/s44198-023-00152-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bifurcations of equilibria of a wing model have been investigated in this paper. It is shown that the quintic nonlinear terms in the pitch and the plunge coordinate have affected the bifurcation structure of nontrivial equilibria in different degree. In contrast with the quintic stiffening parameter in plunge, the quintic parameter in pitch has a relatively significant effect, which will affect the number, position and stability of nontrivial equilibria. Therein two pairs of nontrivial equilibria with opposite stability coexist or disappear by two fold bifurcations. If the freestream velocity has been taken as a continuation parameter, it will affect the bifurcation structure of all the equilibria, including the trivial and the nontrivial. Wherein the equilibria vary from a trivial to two nontrivial ones by a pitchfork bifurcation. Then one of nontrivial equilibria experiences a supercritical Hopf bifurcation and the bifurcated limit cycles form an ellipsoidal structure with the limit cycles bifurcated from the trivial equilibrium.\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"52 16\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-023-00152-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00152-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了机翼模型的平衡分岔问题。结果表明,俯仰坐标和俯仰坐标中的五次非线性项对非平凡平衡的分岔结构有不同程度的影响。与俯仰时的五次加筋参数相比,俯仰时的五次加筋参数对非平凡平衡的数量、位置和稳定性影响较大。其中两对具有相反稳定性的非平凡平衡点共存或因两次分叉而消失。如果将自由流速度作为延续参数,它将影响所有平衡态的分岔结构,包括平凡平衡态和非平凡平衡态。其中均衡通过干草叉分叉从一个平凡的变为两个非平凡的。然后其中一个非平凡平衡点经历一个超临界Hopf分岔,分岔后的极限环形成一个椭球结构,极限环从非平凡平衡点分岔而出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Investigation of Dynamical Behavior of a Wing Model

An Investigation of Dynamical Behavior of a Wing Model
Abstract Bifurcations of equilibria of a wing model have been investigated in this paper. It is shown that the quintic nonlinear terms in the pitch and the plunge coordinate have affected the bifurcation structure of nontrivial equilibria in different degree. In contrast with the quintic stiffening parameter in plunge, the quintic parameter in pitch has a relatively significant effect, which will affect the number, position and stability of nontrivial equilibria. Therein two pairs of nontrivial equilibria with opposite stability coexist or disappear by two fold bifurcations. If the freestream velocity has been taken as a continuation parameter, it will affect the bifurcation structure of all the equilibria, including the trivial and the nontrivial. Wherein the equilibria vary from a trivial to two nontrivial ones by a pitchfork bifurcation. Then one of nontrivial equilibria experiences a supercritical Hopf bifurcation and the bifurcated limit cycles form an ellipsoidal structure with the limit cycles bifurcated from the trivial equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信