Weiller F. C. Barboza, Henrique F. de Lima, Marco A. L. Velásquez
{"title":"重温沉浸在局部对称半黎曼空间中的线性Weingarten类空间子流形","authors":"Weiller F. C. Barboza, Henrique F. de Lima, Marco A. L. Velásquez","doi":"10.14712/1213-7243.2023.013","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori--Yau maximum principle, parabolicity with respect to a modified Cheng--Yau operator and a certain integrability property.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":"39 5","pages":"0"},"PeriodicalIF":0.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space\",\"authors\":\"Weiller F. C. Barboza, Henrique F. de Lima, Marco A. L. Velásquez\",\"doi\":\"10.14712/1213-7243.2023.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori--Yau maximum principle, parabolicity with respect to a modified Cheng--Yau operator and a certain integrability property.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\"39 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2023.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2023.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space
In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori--Yau maximum principle, parabolicity with respect to a modified Cheng--Yau operator and a certain integrability property.