{"title":"(相对论)Vlasov-Maxwell系统的全局经典极限","authors":"Donghao Li, Ling Liu, Hongwei Zhang","doi":"10.1007/s44198-023-00150-4","DOIUrl":null,"url":null,"abstract":"Abstract It is shown that solutions of the (relativistic) Vlasov–Maxwell system converge pointwise to solutions of the Vlasov–Poisson system globally in time at the asymptotic rate of $$c^{-1},$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> as the light speed c tends to infinity, which extends the results of Asano and Ukai (Stud Math Appl 18:369–383, 1986), Degond (Math Methods Appl Sci 8:533–558, 1986) and Schaeffer (Commun Math Phys 104:403–421, 1986). The analysis relies on the method of Glassey and Strauss (Commun Math Phys 113:191–208, 1987) and Schaeffer (Commun Math Phys 104:403–421, 1986).","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"64 12","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Global Classical Limit of the (Relativistic) Vlasov–Maxwell System\",\"authors\":\"Donghao Li, Ling Liu, Hongwei Zhang\",\"doi\":\"10.1007/s44198-023-00150-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is shown that solutions of the (relativistic) Vlasov–Maxwell system converge pointwise to solutions of the Vlasov–Poisson system globally in time at the asymptotic rate of $$c^{-1},$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>c</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:math> as the light speed c tends to infinity, which extends the results of Asano and Ukai (Stud Math Appl 18:369–383, 1986), Degond (Math Methods Appl Sci 8:533–558, 1986) and Schaeffer (Commun Math Phys 104:403–421, 1986). The analysis relies on the method of Glassey and Strauss (Commun Math Phys 113:191–208, 1987) and Schaeffer (Commun Math Phys 104:403–421, 1986).\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"64 12\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-023-00150-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44198-023-00150-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
摘要证明了(相对论性)Vlasov-Maxwell系统的解在时间上以$$c^{-1},$$ c - 1的渐近速率全局收敛于Vlasov-Poisson系统的解,当光速c趋于无穷大时,推广了Asano和Ukai (Stud数学应用,18:369-383,1986),Degond(数学方法应用,8:533-558,1986)和Schaeffer(公共数学物理,104:404 - 421,1986)的结果。分析依据Glassey和Strauss (common Math Phys 113:191-208, 1987)和Schaeffer (common Math Phys 104:403-421, 1986)的方法。
On Global Classical Limit of the (Relativistic) Vlasov–Maxwell System
Abstract It is shown that solutions of the (relativistic) Vlasov–Maxwell system converge pointwise to solutions of the Vlasov–Poisson system globally in time at the asymptotic rate of $$c^{-1},$$ c-1, as the light speed c tends to infinity, which extends the results of Asano and Ukai (Stud Math Appl 18:369–383, 1986), Degond (Math Methods Appl Sci 8:533–558, 1986) and Schaeffer (Commun Math Phys 104:403–421, 1986). The analysis relies on the method of Glassey and Strauss (Commun Math Phys 113:191–208, 1987) and Schaeffer (Commun Math Phys 104:403–421, 1986).
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics