更快R-CNN算法在物联网口罩佩戴检测中的作用:地方病准备

IF 0.5 Q4 TELECOMMUNICATIONS
{"title":"更快R-CNN算法在物联网口罩佩戴检测中的作用:地方病准备","authors":"","doi":"10.24425/ijet.2023.147689","DOIUrl":null,"url":null,"abstract":"— Faster R-CNN is an algorithm development that continuously starts from CNN then R-CNN and Faster R-CNN. The development of the algorithm is needed to test whether the heuristic algorithm has optimal provisions. Broadly speaking, faster R-CNN is included in algorithms that are able to solve neural network and machine learning problems to detect a moving object. One of the moving objects in the current phenomenon is the use of masks. Where various countries in the world have issued endemic orations after the Covid 19 pandemic occurred. Detection tool has been prepared that has been tested at the mandatory mask door, namely for mask users. In this paper, the role of the Faster R-CNN algorithm has been carried out to detect masks poured on Internet of Thinks (IoT) devices to automatically open doors for standard mask users. From the results received that testing on the detection of moving mask objects when used reaches 100% optimal at a distance of 0.5 to 1 meter and 95% at a distance of 1.5 to 2 meters so that the process of sending detection signals to IoT devices can be carried out at a distance of 1 meter at the position mask users to automatic doors.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":"14 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Faster R-CNN Algorithm in the Internet of Things to Detect Mask Wearing: The Endemic Preparations\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2023.147689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Faster R-CNN is an algorithm development that continuously starts from CNN then R-CNN and Faster R-CNN. The development of the algorithm is needed to test whether the heuristic algorithm has optimal provisions. Broadly speaking, faster R-CNN is included in algorithms that are able to solve neural network and machine learning problems to detect a moving object. One of the moving objects in the current phenomenon is the use of masks. Where various countries in the world have issued endemic orations after the Covid 19 pandemic occurred. Detection tool has been prepared that has been tested at the mandatory mask door, namely for mask users. In this paper, the role of the Faster R-CNN algorithm has been carried out to detect masks poured on Internet of Thinks (IoT) devices to automatically open doors for standard mask users. From the results received that testing on the detection of moving mask objects when used reaches 100% optimal at a distance of 0.5 to 1 meter and 95% at a distance of 1.5 to 2 meters so that the process of sending detection signals to IoT devices can be carried out at a distance of 1 meter at the position mask users to automatic doors.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2023.147689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2023.147689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Faster R-CNN Algorithm in the Internet of Things to Detect Mask Wearing: The Endemic Preparations
— Faster R-CNN is an algorithm development that continuously starts from CNN then R-CNN and Faster R-CNN. The development of the algorithm is needed to test whether the heuristic algorithm has optimal provisions. Broadly speaking, faster R-CNN is included in algorithms that are able to solve neural network and machine learning problems to detect a moving object. One of the moving objects in the current phenomenon is the use of masks. Where various countries in the world have issued endemic orations after the Covid 19 pandemic occurred. Detection tool has been prepared that has been tested at the mandatory mask door, namely for mask users. In this paper, the role of the Faster R-CNN algorithm has been carried out to detect masks poured on Internet of Thinks (IoT) devices to automatically open doors for standard mask users. From the results received that testing on the detection of moving mask objects when used reaches 100% optimal at a distance of 0.5 to 1 meter and 95% at a distance of 1.5 to 2 meters so that the process of sending detection signals to IoT devices can be carried out at a distance of 1 meter at the position mask users to automatic doors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信