{"title":"一种新的网络物理系统自适应采样算法","authors":"Mohammed Molhem","doi":"10.1556/1848.2023.00667","DOIUrl":null,"url":null,"abstract":"Abstract Sensors are the main components in Cyber-Physical Systems (CPS), which transmit large amounts of physical values and big data to computing platforms for processing. On the other hand, the embedded processors (as edge devices in fog computing) spend most of their time reading the sensor signals as compared with computing time. The impact of sensors on the performance of fog computing is very great, thus, the enhancement of the reading time of sensors will positively affect the performance of fog computing, and solves the CPS challenges such as delay, timed precision, temporal behavior, energy, and cost. In this paper, we propose an algorithm based on the 1st derivative of the sensor signal to generate an adaptive sampling frequency. The proposed algorithm uses an adaptive frequency to capture the sudden and rapid change in sensor signal in the steady state. Finally, we realize and tested it using the Ptolemy II Modeling Environment.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel adaptive sampling algorithm for cyber-physical systems\",\"authors\":\"Mohammed Molhem\",\"doi\":\"10.1556/1848.2023.00667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sensors are the main components in Cyber-Physical Systems (CPS), which transmit large amounts of physical values and big data to computing platforms for processing. On the other hand, the embedded processors (as edge devices in fog computing) spend most of their time reading the sensor signals as compared with computing time. The impact of sensors on the performance of fog computing is very great, thus, the enhancement of the reading time of sensors will positively affect the performance of fog computing, and solves the CPS challenges such as delay, timed precision, temporal behavior, energy, and cost. In this paper, we propose an algorithm based on the 1st derivative of the sensor signal to generate an adaptive sampling frequency. The proposed algorithm uses an adaptive frequency to capture the sudden and rapid change in sensor signal in the steady state. Finally, we realize and tested it using the Ptolemy II Modeling Environment.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2023.00667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A novel adaptive sampling algorithm for cyber-physical systems
Abstract Sensors are the main components in Cyber-Physical Systems (CPS), which transmit large amounts of physical values and big data to computing platforms for processing. On the other hand, the embedded processors (as edge devices in fog computing) spend most of their time reading the sensor signals as compared with computing time. The impact of sensors on the performance of fog computing is very great, thus, the enhancement of the reading time of sensors will positively affect the performance of fog computing, and solves the CPS challenges such as delay, timed precision, temporal behavior, energy, and cost. In this paper, we propose an algorithm based on the 1st derivative of the sensor signal to generate an adaptive sampling frequency. The proposed algorithm uses an adaptive frequency to capture the sudden and rapid change in sensor signal in the steady state. Finally, we realize and tested it using the Ptolemy II Modeling Environment.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.