论非单调次模态函数与线性函数之和的最大化

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Benjamin Qi
{"title":"论非单调次模态函数与线性函数之和的最大化","authors":"Benjamin Qi","doi":"10.1007/s00453-023-01183-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of <span>Regularized Unconstrained Submodular</span> <span>Maximization</span> (<span>RegularizedUSM</span>) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function <span>\\(f:2^{{\\mathcal {N}}}\\rightarrow {\\mathbb {R}}_{\\ge 0}\\)</span> and a linear function <span>\\(\\ell :2^{{\\mathcal {N}}}\\rightarrow {\\mathbb {R}}\\)</span> over the same ground set <span>\\({\\mathcal {N}}\\)</span>, output a set <span>\\(T\\subseteq {\\mathcal {N}}\\)</span> approximately maximizing the sum <span>\\(f(T)+\\ell (T)\\)</span>. An algorithm is said to provide an <span>\\((\\alpha ,\\beta )\\)</span>-approximation for <span>RegularizedUSM</span> if it outputs a set <i>T</i> such that <span>\\({\\mathbb {E}}[f(T)+\\ell (T)]\\ge \\max _{S\\subseteq {\\mathcal {N}}}[\\alpha \\cdot f(S)+\\beta \\cdot \\ell (S)]\\)</span>. We also consider the setting where <i>S</i> and <i>T</i> are constrained to be independent in a given matroid, which we refer to as <span>Regularized</span> <i>Constrained</i> <span>Submodular Maximization</span> (<span>RegularizedCSM</span>). The special case of <span>RegularizedCSM</span> with monotone <i>f</i> has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies <span>RegularizedCSM</span> with non-monotone <i>f</i> (Lu et al. in Optimization 1–27, 2023), and that work constrains <span>\\(\\ell \\)</span> to be non-positive. In this work, we provide improved <span>\\((\\alpha ,\\beta )\\)</span>-approximation algorithms for both <span>RegularizedUSM</span> and <span>RegularizedCSM</span> with non-monotone <i>f</i>. Specifically, we are the first to provide nontrivial <span>\\((\\alpha ,\\beta )\\)</span>-approximations for <span>RegularizedCSM</span> where the sign of <span>\\(\\ell \\)</span> is unconstrained, and the <span>\\(\\alpha \\)</span> we obtain for <span>RegularizedUSM</span> improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all <span>\\(\\beta \\in (0,1)\\)</span>. We also prove new inapproximability results for <span>RegularizedUSM</span> and <span>RegularizedCSM</span>, as well as 0.478-inapproximability for maximizing a submodular function where <i>S</i> and <i>T</i> are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 4","pages":"1080 - 1134"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-023-01183-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On Maximizing Sums of Non-monotone Submodular and Linear Functions\",\"authors\":\"Benjamin Qi\",\"doi\":\"10.1007/s00453-023-01183-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the problem of <span>Regularized Unconstrained Submodular</span> <span>Maximization</span> (<span>RegularizedUSM</span>) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function <span>\\\\(f:2^{{\\\\mathcal {N}}}\\\\rightarrow {\\\\mathbb {R}}_{\\\\ge 0}\\\\)</span> and a linear function <span>\\\\(\\\\ell :2^{{\\\\mathcal {N}}}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> over the same ground set <span>\\\\({\\\\mathcal {N}}\\\\)</span>, output a set <span>\\\\(T\\\\subseteq {\\\\mathcal {N}}\\\\)</span> approximately maximizing the sum <span>\\\\(f(T)+\\\\ell (T)\\\\)</span>. An algorithm is said to provide an <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>-approximation for <span>RegularizedUSM</span> if it outputs a set <i>T</i> such that <span>\\\\({\\\\mathbb {E}}[f(T)+\\\\ell (T)]\\\\ge \\\\max _{S\\\\subseteq {\\\\mathcal {N}}}[\\\\alpha \\\\cdot f(S)+\\\\beta \\\\cdot \\\\ell (S)]\\\\)</span>. We also consider the setting where <i>S</i> and <i>T</i> are constrained to be independent in a given matroid, which we refer to as <span>Regularized</span> <i>Constrained</i> <span>Submodular Maximization</span> (<span>RegularizedCSM</span>). The special case of <span>RegularizedCSM</span> with monotone <i>f</i> has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies <span>RegularizedCSM</span> with non-monotone <i>f</i> (Lu et al. in Optimization 1–27, 2023), and that work constrains <span>\\\\(\\\\ell \\\\)</span> to be non-positive. In this work, we provide improved <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>-approximation algorithms for both <span>RegularizedUSM</span> and <span>RegularizedCSM</span> with non-monotone <i>f</i>. Specifically, we are the first to provide nontrivial <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>-approximations for <span>RegularizedCSM</span> where the sign of <span>\\\\(\\\\ell \\\\)</span> is unconstrained, and the <span>\\\\(\\\\alpha \\\\)</span> we obtain for <span>RegularizedUSM</span> improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all <span>\\\\(\\\\beta \\\\in (0,1)\\\\)</span>. We also prove new inapproximability results for <span>RegularizedUSM</span> and <span>RegularizedCSM</span>, as well as 0.478-inapproximability for maximizing a submodular function where <i>S</i> and <i>T</i> are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"86 4\",\"pages\":\"1080 - 1134\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00453-023-01183-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-023-01183-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-023-01183-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 Bodek 和 Feldman 定义的 Regularized Unconstrained Submodular Maximization(RegularizedUSM)问题(Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022):给定查询访问一个非负亚模态函数 \(f:2^{\mathcal {N}}\rightarrow {\mathbb {R}}_{\ge 0}\) 和一个线性函数 \(\ell :2^{{{mathcal {N}}}\rightarrow {\mathbb {R}}\) over the same ground set \({mathcal {N}}\), output a set \(T\subseteq {\mathcal {N}}\) approximately maximizing the sum \(f(T)+\ell (T)\).如果一个算法输出的集合T使得({\mathbb {E}}[f(T)+\ell (T)]ge\max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)])近似,那么就可以说它为RegularizedUSM提供了一个((\alpha ,\beta))近似值。我们还考虑了 S 和 T 在给定 matroid 中受限为独立的情况,我们将其称为正规化受限次模态最大化(RegularizedCSM)。对于具有单调性 f 的 RegularizedCSM 特例,已有大量研究(Sviridenko 等人,发表于 Math Oper Res 42(4):1197-1218, 2017;Feldman,发表于 Algorithmica 83(3):853-878, 2021;Harshaw et al:国际机器学习会议,PMLR,2634-2643,2019),而我们只知道之前有一项工作研究了具有非单调 f 的 RegularizedCSM(Lu 等人,载于 Optimization 1-27,2023),并且该工作约束 \(\ell \) 为非正值。在这项工作中,我们为具有非单调 f 的 RegularizedUSM 和 RegularizedCSM 提供了改进的 \((\alpha ,\beta )\)-approximation 算法。具体来说,我们是第一个在 \(\ell \) 的符号不受约束的情况下为 RegularizedCSM 提供非rivial \((\alpha ,\beta )\)-approximations 的人,而且我们为 RegularizedUSM 得到的 \(\alpha \) 比(Bodek 和 Feldman 在 Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022)。我们还证明了 RegularizedUSM 和 RegularizedCSM 的新的不可逼近性结果,以及 S 和 T 受 cardinality 约束的子模函数最大化的 0.478-inapproximability 结果,改进了 Oveis Gharan 和 Vondrak(in:第二十二届 ACM-SIAM 离散算法年度研讨会论文集》,SIAM,第 1098-1116 页,2011 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Maximizing Sums of Non-monotone Submodular and Linear Functions

On Maximizing Sums of Non-monotone Submodular and Linear Functions

We study the problem of Regularized Unconstrained Submodular Maximization (RegularizedUSM) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function \(f:2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}_{\ge 0}\) and a linear function \(\ell :2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}\) over the same ground set \({\mathcal {N}}\), output a set \(T\subseteq {\mathcal {N}}\) approximately maximizing the sum \(f(T)+\ell (T)\). An algorithm is said to provide an \((\alpha ,\beta )\)-approximation for RegularizedUSM if it outputs a set T such that \({\mathbb {E}}[f(T)+\ell (T)]\ge \max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)]\). We also consider the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized Constrained Submodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in Optimization 1–27, 2023), and that work constrains \(\ell \) to be non-positive. In this work, we provide improved \((\alpha ,\beta )\)-approximation algorithms for both RegularizedUSM and RegularizedCSM with non-monotone f. Specifically, we are the first to provide nontrivial \((\alpha ,\beta )\)-approximations for RegularizedCSM where the sign of \(\ell \) is unconstrained, and the \(\alpha \) we obtain for RegularizedUSM improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all \(\beta \in (0,1)\). We also prove new inapproximability results for RegularizedUSM and RegularizedCSM, as well as 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信