里程计和Toeplitz子位移的稳定自同构群

IF 0.8 3区 数学 Q2 MATHEMATICS
JENNIFER N. JONES-BARO
{"title":"里程计和Toeplitz子位移的稳定自同构群","authors":"JENNIFER N. JONES-BARO","doi":"10.1017/etds.2023.109","DOIUrl":null,"url":null,"abstract":"Abstract We characterize the stabilized automorphism group for odometers and Toeplitz subshifts, and then prove an invariance property of the stabilized automorphism group of these dynamical systems. Namely, we prove the isomorphism invariance of the primes for which the p -adic valuation of the period structure tends to infinity. A particular case of interest is that for torsion-free odometers, the stabilized automorphism group is a full isomorphism invariant.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"27 5","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stabilized automorphism group of odometers and of Toeplitz subshifts\",\"authors\":\"JENNIFER N. JONES-BARO\",\"doi\":\"10.1017/etds.2023.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We characterize the stabilized automorphism group for odometers and Toeplitz subshifts, and then prove an invariance property of the stabilized automorphism group of these dynamical systems. Namely, we prove the isomorphism invariance of the primes for which the p -adic valuation of the period structure tends to infinity. A particular case of interest is that for torsion-free odometers, the stabilized automorphism group is a full isomorphism invariant.\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"27 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.109\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文刻画了里程计和Toeplitz子位移的稳定自同构群,并证明了这些动力系统稳定自同构群的一个不变性。即证明周期结构的p进值趋于无穷的素数的同构不变性。我们感兴趣的一个特殊情况是,对于无扭里程表,稳定自同构群是一个完全同构不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilized automorphism group of odometers and of Toeplitz subshifts
Abstract We characterize the stabilized automorphism group for odometers and Toeplitz subshifts, and then prove an invariance property of the stabilized automorphism group of these dynamical systems. Namely, we prove the isomorphism invariance of the primes for which the p -adic valuation of the period structure tends to infinity. A particular case of interest is that for torsion-free odometers, the stabilized automorphism group is a full isomorphism invariant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
11.10%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信