使用奈维贝叶斯算法和粒子群优化特征选择对推特社交网络上的 PeduliLindungi 应用程序进行情感分析

Q4 Computer Science
Muhamad Hanif Razka, Theresiawati Theresiawati, Nurul Chamidah
{"title":"使用奈维贝叶斯算法和粒子群优化特征选择对推特社交网络上的 PeduliLindungi 应用程序进行情感分析","authors":"Muhamad Hanif Razka, Theresiawati Theresiawati, Nurul Chamidah","doi":"10.52958/iftk.v19i1.4688","DOIUrl":null,"url":null,"abstract":"Aplikasi PeduliLindungi merupakan sebuah aplikasi resmi dari Kominfo yang bekerjasama dengan beberapa kementerian lainnya. Aplikasi ini bertujuan untuk membantu mencegah penyebaran virus COVID-19 karena selalu terhubung dengan penggunanya berdasarkan lokasi. Penelitian ini menggunakan data opini publik terhadap penggunaan aplikasi PeduliLindungi dari hasil tweets masyarakat menggunakan kata kunci seperti Peduli Lindungi, hastag #PeduliLindungi dan pengguna yang menyebutkan username @PLindungi. Pengambilan data dilakukan pada tanggal 13 Maret hingga 11 April 2022. Dalam penelitian ini memiliki tujuan untuk melakukan proses mengkategorikan sebuah data tweet menjadi sentimen bersifat positif dan negatif dan menggunakan algoritma Naïve Bayes untuk proses klasifikasinya kemudian menerapkan penggunaan seleksi fitur Particle Swarm Optimization untuk selanjutnya masuk ke dalam tahap evaluasi dengan confusion matrix guna melihat perbandingan akurasi penggunaan seleksi fitur bagi algoritma klasifikasi tersebut. Dan dari hasil pengujian menggunakan algoritma klasifikasi Naïve Bayes mendapatkan nilai akurasi sebesar 76.23%, Recall sebesar 76.78%, serta Precission sebesar 79.62%. Sementara penggunaan seleksi fitur Particle Swarm Optimization pada algoritma Naïve Bayes mendapatkan hasil terbaik pada proses iterasi PSO sebanyak 250 kali dengan peningkatan nilai akurasi menjadi 80.19% kemudian nilai recall menjadi 85.71% serta terdapat peningkatan pada precission menjadi 80%.","PeriodicalId":39769,"journal":{"name":"Informatik-Spektrum","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Sentimen terhadap Aplikasi PeduliLindungi pada Jejaring Sosial Twitter Menggunakan Algoritma Naïve Bayes dan Seleksi Fitur Particle Swarm Optimization\",\"authors\":\"Muhamad Hanif Razka, Theresiawati Theresiawati, Nurul Chamidah\",\"doi\":\"10.52958/iftk.v19i1.4688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aplikasi PeduliLindungi merupakan sebuah aplikasi resmi dari Kominfo yang bekerjasama dengan beberapa kementerian lainnya. Aplikasi ini bertujuan untuk membantu mencegah penyebaran virus COVID-19 karena selalu terhubung dengan penggunanya berdasarkan lokasi. Penelitian ini menggunakan data opini publik terhadap penggunaan aplikasi PeduliLindungi dari hasil tweets masyarakat menggunakan kata kunci seperti Peduli Lindungi, hastag #PeduliLindungi dan pengguna yang menyebutkan username @PLindungi. Pengambilan data dilakukan pada tanggal 13 Maret hingga 11 April 2022. Dalam penelitian ini memiliki tujuan untuk melakukan proses mengkategorikan sebuah data tweet menjadi sentimen bersifat positif dan negatif dan menggunakan algoritma Naïve Bayes untuk proses klasifikasinya kemudian menerapkan penggunaan seleksi fitur Particle Swarm Optimization untuk selanjutnya masuk ke dalam tahap evaluasi dengan confusion matrix guna melihat perbandingan akurasi penggunaan seleksi fitur bagi algoritma klasifikasi tersebut. Dan dari hasil pengujian menggunakan algoritma klasifikasi Naïve Bayes mendapatkan nilai akurasi sebesar 76.23%, Recall sebesar 76.78%, serta Precission sebesar 79.62%. Sementara penggunaan seleksi fitur Particle Swarm Optimization pada algoritma Naïve Bayes mendapatkan hasil terbaik pada proses iterasi PSO sebanyak 250 kali dengan peningkatan nilai akurasi menjadi 80.19% kemudian nilai recall menjadi 85.71% serta terdapat peningkatan pada precission menjadi 80%.\",\"PeriodicalId\":39769,\"journal\":{\"name\":\"Informatik-Spektrum\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatik-Spektrum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52958/iftk.v19i1.4688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatik-Spektrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52958/iftk.v19i1.4688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

源控申请是Kominfo与其他部门合作的官方申请。该应用程序的目的是帮助防止COVID-19病毒的传播,因为它总是根据位置与用户连接。这项研究使用民意数据,从推特用户使用的关键词,如care protect、hastag # protect和使用用户名@ pprotect。数据检索发生在2022年3月13日至4月11日。有目的的进行这一进程分类研究中一个推特数据成为具有积极和消极的情绪,用天真贝叶斯算法进行分类,然后应用程序使用粒子特性选择蜂群Optimization接下来要进入评估阶段以混乱矩阵看到分类算法的准确度比较使用特征选择。通过使用Naive Bayes分类算法的测试,我们的准确率为76.23%,召回分数为76.78%,precision值为79.62%。在Naive Bayes算法中使用Swarm粒子优化算法的同时,准确率增加到80.19%,而recall值增加到88.71%,precision值增加到80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisis Sentimen terhadap Aplikasi PeduliLindungi pada Jejaring Sosial Twitter Menggunakan Algoritma Naïve Bayes dan Seleksi Fitur Particle Swarm Optimization
Aplikasi PeduliLindungi merupakan sebuah aplikasi resmi dari Kominfo yang bekerjasama dengan beberapa kementerian lainnya. Aplikasi ini bertujuan untuk membantu mencegah penyebaran virus COVID-19 karena selalu terhubung dengan penggunanya berdasarkan lokasi. Penelitian ini menggunakan data opini publik terhadap penggunaan aplikasi PeduliLindungi dari hasil tweets masyarakat menggunakan kata kunci seperti Peduli Lindungi, hastag #PeduliLindungi dan pengguna yang menyebutkan username @PLindungi. Pengambilan data dilakukan pada tanggal 13 Maret hingga 11 April 2022. Dalam penelitian ini memiliki tujuan untuk melakukan proses mengkategorikan sebuah data tweet menjadi sentimen bersifat positif dan negatif dan menggunakan algoritma Naïve Bayes untuk proses klasifikasinya kemudian menerapkan penggunaan seleksi fitur Particle Swarm Optimization untuk selanjutnya masuk ke dalam tahap evaluasi dengan confusion matrix guna melihat perbandingan akurasi penggunaan seleksi fitur bagi algoritma klasifikasi tersebut. Dan dari hasil pengujian menggunakan algoritma klasifikasi Naïve Bayes mendapatkan nilai akurasi sebesar 76.23%, Recall sebesar 76.78%, serta Precission sebesar 79.62%. Sementara penggunaan seleksi fitur Particle Swarm Optimization pada algoritma Naïve Bayes mendapatkan hasil terbaik pada proses iterasi PSO sebanyak 250 kali dengan peningkatan nilai akurasi menjadi 80.19% kemudian nilai recall menjadi 85.71% serta terdapat peningkatan pada precission menjadi 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatik-Spektrum
Informatik-Spektrum Computer Science-Computer Science Applications
CiteScore
1.10
自引率
0.00%
发文量
72
期刊介绍: Im Informatik Spektrum finden Sie aktuelle, praktisch verwertbare Informationen über technische und wissenschaftliche Trends und Entwicklungen aus allen Bereichen der Informatik. Die Zeitschrift enthält Übersichtsartikel und einführende Darstellungen sowie Berichte über Projekte und Fallstudien aus der Praxis. Interviews, Kolumnen und Buchrezensionen runden das Angebot ab.Bilden Sie sich weiter, erschließen Sie sich neue Sachgebiete oder verschaffen Sie sich einen Überblick. Informatik Spektrum richtet sich neben Informatikspezialisten auch an Praktiker und Studierende, die Interesse an der wissenschaftlichen Entwicklung und praktischen  Anwendung der Informatik haben.Möchten Sie zu einem Heft beitragen, richten Sie Ihren Vorschlag gerne an den Chefredakteur Peter Pagel (peter.pagel@springer.com). Willkommen sind Beiträge zum jeweiligen Schwerpunkt ebenso wie Beiträge zum gesamten Themenspektrum der Informatik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信