利用时间序列法对纸箱需求的预测分析 ud blessing jaya offset

None Yoga Satya Andriawan, None Nur Muflihah
{"title":"利用时间序列法对纸箱需求的预测分析 ud blessing jaya offset","authors":"None Yoga Satya Andriawan, None Nur Muflihah","doi":"10.33752/invantri.v3i1.5004","DOIUrl":null,"url":null,"abstract":"UD Berkah Jaya Offset is one of the manufacturing companies operating in the field of cardboard box production. The company offers a variety of cardboard box products in various sizes, including sizes D1, D2, D3, trepes, and roll. In the production of cardboard boxes, particularly size D1, issues such as overstock and even stock shortages have been frequently encountered during the period from January 2022 to December 2023. This is due to the ineffective demand forecasting to anticipate these possibilities. This study aims to forecast the demand for size D1 cardboard boxes for the upcoming months using the best forecasting method. The methods employed are decomposition method, Winter's exponential smoothing, and Holt's exponential smoothing. This research compares the three methods based on the smallest Mean Absolute Percentage Error (MAPE) value. The results of the study reveal that the decomposition method is the most effective, with a MAPE value of 19, MAD value of 28000, and MSD value of 1247419480, indicating a low level of forecasting error compared to the others.","PeriodicalId":473008,"journal":{"name":"Jurnal Penelitian Bidang Inovasi & Pengelolaan Industri","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALISIS PERAMALAN PERMINTAAN KARTON BOX UD BERKAH JAYA OFFSET MENGGUNAKAN METODE TIME SERIES\",\"authors\":\"None Yoga Satya Andriawan, None Nur Muflihah\",\"doi\":\"10.33752/invantri.v3i1.5004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UD Berkah Jaya Offset is one of the manufacturing companies operating in the field of cardboard box production. The company offers a variety of cardboard box products in various sizes, including sizes D1, D2, D3, trepes, and roll. In the production of cardboard boxes, particularly size D1, issues such as overstock and even stock shortages have been frequently encountered during the period from January 2022 to December 2023. This is due to the ineffective demand forecasting to anticipate these possibilities. This study aims to forecast the demand for size D1 cardboard boxes for the upcoming months using the best forecasting method. The methods employed are decomposition method, Winter's exponential smoothing, and Holt's exponential smoothing. This research compares the three methods based on the smallest Mean Absolute Percentage Error (MAPE) value. The results of the study reveal that the decomposition method is the most effective, with a MAPE value of 19, MAD value of 28000, and MSD value of 1247419480, indicating a low level of forecasting error compared to the others.\",\"PeriodicalId\":473008,\"journal\":{\"name\":\"Jurnal Penelitian Bidang Inovasi & Pengelolaan Industri\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Penelitian Bidang Inovasi & Pengelolaan Industri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33752/invantri.v3i1.5004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Penelitian Bidang Inovasi & Pengelolaan Industri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33752/invantri.v3i1.5004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

UD Berkah Jaya胶印机是在纸箱生产领域经营的制造公司之一。该公司提供各种尺寸的纸箱产品,包括D1, D2, D3,树型和卷型。在纸板箱特别是D1尺寸纸板箱的生产中,在2022年1月至2023年12月期间,经常遇到库存积压甚至缺货等问题。这是由于没有有效的需求预测来预测这些可能性。本研究旨在使用最佳预测方法预测未来几个月D1尺寸纸板箱的需求。采用的方法有分解法、Winter指数平滑法和Holt指数平滑法。本研究基于最小的平均绝对百分比误差(MAPE)值对三种方法进行比较。研究结果表明,该分解方法最有效,MAPE值为19,MAD值为28000,MSD值为1247419480,与其他方法相比,预测误差水平较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS PERAMALAN PERMINTAAN KARTON BOX UD BERKAH JAYA OFFSET MENGGUNAKAN METODE TIME SERIES
UD Berkah Jaya Offset is one of the manufacturing companies operating in the field of cardboard box production. The company offers a variety of cardboard box products in various sizes, including sizes D1, D2, D3, trepes, and roll. In the production of cardboard boxes, particularly size D1, issues such as overstock and even stock shortages have been frequently encountered during the period from January 2022 to December 2023. This is due to the ineffective demand forecasting to anticipate these possibilities. This study aims to forecast the demand for size D1 cardboard boxes for the upcoming months using the best forecasting method. The methods employed are decomposition method, Winter's exponential smoothing, and Holt's exponential smoothing. This research compares the three methods based on the smallest Mean Absolute Percentage Error (MAPE) value. The results of the study reveal that the decomposition method is the most effective, with a MAPE value of 19, MAD value of 28000, and MSD value of 1247419480, indicating a low level of forecasting error compared to the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信