{"title":"溶液中Pb阳离子的选择性去除和同时固定化","authors":"Yunchul Cho, Jing Wang, Sungpyo Kim, Huaibin Zhang, Wenyan Huang, Sridhar Komarneni","doi":"10.1080/01496395.2023.2262745","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe aim of this study was to develop a layered ammonium tin phosphate as a potential sorbent for removal of Pb2+ ions by exchange/sorption or other mechanism from contaminated solutions. A layered ammonium tin phosphate (NH4-SnP), δ-SnP – NH4 was synthesized using the hydrothermal process. XRD pattern of the NH4-SnP revealed that the final product obtained was δ-tin (IV) phosphate with the d(001)-spacing of about 14.8 Å containing ammonium ions and water molecules in the interlayers. In order to investigate the removal efficiency of Pb2+ cations by the NH4-SnP, batch-type of sorption experiments were carried out with 2 days of equilibration time at room temperature. Also, the kinetics of reaction was performed at room temperature to determine equilibrium time. The sorption isotherms for Pb2+ cations indicated that NH4-SnP showed high affinity for these ions with all the concentrations used. In addition, kinetic data showed preference for Pb2+ cations between NH4+ cation on the exchanger and Pb2+metal cation in solution. Based on these results, NH4-SnP can be proposed as an excellent sorbent for not only removal but also immobilization of Pb2+ ions from water and wastewater. Pb2+ ions were found to be immobilized as insoluble pyromorphite, Pb5(PO4)Cl after high uptakes.KEYWORDS: Pb2+ reactionPb2+ immobilizationpyromorphitePb2+ isothermδ-tin (IV) phosphate Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by the College of Agricultural Sciences under Station Research Project No. PEN04705.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective removal and simultaneous immobilization of Pb cations from solutions\",\"authors\":\"Yunchul Cho, Jing Wang, Sungpyo Kim, Huaibin Zhang, Wenyan Huang, Sridhar Komarneni\",\"doi\":\"10.1080/01496395.2023.2262745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe aim of this study was to develop a layered ammonium tin phosphate as a potential sorbent for removal of Pb2+ ions by exchange/sorption or other mechanism from contaminated solutions. A layered ammonium tin phosphate (NH4-SnP), δ-SnP – NH4 was synthesized using the hydrothermal process. XRD pattern of the NH4-SnP revealed that the final product obtained was δ-tin (IV) phosphate with the d(001)-spacing of about 14.8 Å containing ammonium ions and water molecules in the interlayers. In order to investigate the removal efficiency of Pb2+ cations by the NH4-SnP, batch-type of sorption experiments were carried out with 2 days of equilibration time at room temperature. Also, the kinetics of reaction was performed at room temperature to determine equilibrium time. The sorption isotherms for Pb2+ cations indicated that NH4-SnP showed high affinity for these ions with all the concentrations used. In addition, kinetic data showed preference for Pb2+ cations between NH4+ cation on the exchanger and Pb2+metal cation in solution. Based on these results, NH4-SnP can be proposed as an excellent sorbent for not only removal but also immobilization of Pb2+ ions from water and wastewater. Pb2+ ions were found to be immobilized as insoluble pyromorphite, Pb5(PO4)Cl after high uptakes.KEYWORDS: Pb2+ reactionPb2+ immobilizationpyromorphitePb2+ isothermδ-tin (IV) phosphate Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by the College of Agricultural Sciences under Station Research Project No. PEN04705.\",\"PeriodicalId\":21680,\"journal\":{\"name\":\"Separation Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01496395.2023.2262745\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2262745","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Selective removal and simultaneous immobilization of Pb cations from solutions
ABSTRACTThe aim of this study was to develop a layered ammonium tin phosphate as a potential sorbent for removal of Pb2+ ions by exchange/sorption or other mechanism from contaminated solutions. A layered ammonium tin phosphate (NH4-SnP), δ-SnP – NH4 was synthesized using the hydrothermal process. XRD pattern of the NH4-SnP revealed that the final product obtained was δ-tin (IV) phosphate with the d(001)-spacing of about 14.8 Å containing ammonium ions and water molecules in the interlayers. In order to investigate the removal efficiency of Pb2+ cations by the NH4-SnP, batch-type of sorption experiments were carried out with 2 days of equilibration time at room temperature. Also, the kinetics of reaction was performed at room temperature to determine equilibrium time. The sorption isotherms for Pb2+ cations indicated that NH4-SnP showed high affinity for these ions with all the concentrations used. In addition, kinetic data showed preference for Pb2+ cations between NH4+ cation on the exchanger and Pb2+metal cation in solution. Based on these results, NH4-SnP can be proposed as an excellent sorbent for not only removal but also immobilization of Pb2+ ions from water and wastewater. Pb2+ ions were found to be immobilized as insoluble pyromorphite, Pb5(PO4)Cl after high uptakes.KEYWORDS: Pb2+ reactionPb2+ immobilizationpyromorphitePb2+ isothermδ-tin (IV) phosphate Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by the College of Agricultural Sciences under Station Research Project No. PEN04705.
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.