求解方程{Ai X=Ui},i=1,2的两个厄米算子Ai=Ti+Mi的和

Eman Sadiq
{"title":"求解方程{Ai X=Ui},i=1,2的两个厄米算子Ai=Ti+Mi的和","authors":"Eman Sadiq","doi":"10.31185/wjps.208","DOIUrl":null,"url":null,"abstract":"In this work we study a new class of equations (Ti+Mi)X=Ui, i=1,2 including the sum two of Hermitian operatorsTi and Mi , i=1,2, concerning the kind of spaces are Hilbert. The existence of joint Hermitian solutions to summing two equations of operators has been found under both necessary and sufficient conditions. The n*1 block's Moore-Penrose inverse of summing two matrix of operators has been studied. Therefore, we present Hermitian solutions of the two equations of operators (Ti+Mi)X(Qi+mi)=Ui, i=1,2 with finding of it’s the necessary and sufficient conditions.","PeriodicalId":167115,"journal":{"name":"Wasit Journal of Pure sciences","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sum Two of Hermitian Operators Ai=Ti+Mi for Solving the Equations{Ai X=Ui },i=1,2\",\"authors\":\"Eman Sadiq\",\"doi\":\"10.31185/wjps.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study a new class of equations (Ti+Mi)X=Ui, i=1,2 including the sum two of Hermitian operatorsTi and Mi , i=1,2, concerning the kind of spaces are Hilbert. The existence of joint Hermitian solutions to summing two equations of operators has been found under both necessary and sufficient conditions. The n*1 block's Moore-Penrose inverse of summing two matrix of operators has been studied. Therefore, we present Hermitian solutions of the two equations of operators (Ti+Mi)X(Qi+mi)=Ui, i=1,2 with finding of it’s the necessary and sufficient conditions.\",\"PeriodicalId\":167115,\"journal\":{\"name\":\"Wasit Journal of Pure sciences\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wasit Journal of Pure sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31185/wjps.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Pure sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjps.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类新的方程(Ti+Mi)X=Ui, i=1,2,包含两个厄米算子sti和Mi, i=1,2的和,涉及希尔伯特空间。在充分必要条件下,证明了两个算子方程和的联合厄密解的存在性。研究了两个算子矩阵和的n*1块Moore-Penrose逆。因此,我们给出了(Ti+Mi)X(Qi+ Mi) =Ui, i=1,2这两个算子方程的厄密解,并给出了它的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Sum Two of Hermitian Operators Ai=Ti+Mi for Solving the Equations{Ai X=Ui },i=1,2
In this work we study a new class of equations (Ti+Mi)X=Ui, i=1,2 including the sum two of Hermitian operatorsTi and Mi , i=1,2, concerning the kind of spaces are Hilbert. The existence of joint Hermitian solutions to summing two equations of operators has been found under both necessary and sufficient conditions. The n*1 block's Moore-Penrose inverse of summing two matrix of operators has been studied. Therefore, we present Hermitian solutions of the two equations of operators (Ti+Mi)X(Qi+mi)=Ui, i=1,2 with finding of it’s the necessary and sufficient conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信