Jacobi展开的点态误差估计和局部超收敛性

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang
{"title":"Jacobi展开的点态误差估计和局部超收敛性","authors":"Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang","doi":"10.1090/mcom/3835","DOIUrl":null,"url":null,"abstract":"As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue x minus a EndAbsoluteValue\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>a</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|x-a|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue a EndAbsoluteValue greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|a|&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"95\"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding=\"application/x-tex\">95%</mml:annotation> </mml:semantics> </mml:math> </inline-formula> range of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 1 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> except for a small neighbourhood near the singular point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x equals a period\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x=a.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this paper, we rigorously show that the Jacobi expansion for a more general class of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"log n\"> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\log n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"35 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise error estimates and local superconvergence of Jacobi expansions\",\"authors\":\"Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang\",\"doi\":\"10.1090/mcom/3835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue x minus a EndAbsoluteValue\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>a</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|x-a|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue a EndAbsoluteValue greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|a|&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"95\\\"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">95%</mml:annotation> </mml:semantics> </mml:math> </inline-formula> range of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 1 comma 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> except for a small neighbourhood near the singular point <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x equals a period\\\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x=a.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this paper, we rigorously show that the Jacobi expansion for a more general class of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Phi\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Φ<!-- Φ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"log n\\\"> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\log n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3835\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3835","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

作为多项式插值和正交的一个神话,Trefethen[数学]。Today (Southend-on-Sea) 47 (2011), pp. 184-188]揭示了|x−a| |x-a|的切比雪夫插值(与| a| &gt;1 |a|&gt;1)在克伦肖-柯蒂斯点上的误差比最佳多项式近似(在最大范数中)在大约95 95的误差要小得多% range of [ − 1 , 1 ] [-1,1] except for a small neighbourhood near the singular point x = a . x=a. In this paper, we rigorously show that the Jacobi expansion for a more general class of Φ \Phi -functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired log ⁡ n \log n -factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise error estimates and local superconvergence of Jacobi expansions
As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of | x a | |x-a| (with | a | > 1 |a|>1 ) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about 95 95% range of [ 1 , 1 ] [-1,1] except for a small neighbourhood near the singular point x = a . x=a. In this paper, we rigorously show that the Jacobi expansion for a more general class of Φ \Phi -functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired log n \log n -factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信