Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang
{"title":"Jacobi展开的点态误差估计和局部超收敛性","authors":"Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang","doi":"10.1090/mcom/3835","DOIUrl":null,"url":null,"abstract":"As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue x minus a EndAbsoluteValue\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>a</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|x-a|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue a EndAbsoluteValue greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|a|>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"95\"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding=\"application/x-tex\">95%</mml:annotation> </mml:semantics> </mml:math> </inline-formula> range of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 1 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> except for a small neighbourhood near the singular point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x equals a period\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x=a.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this paper, we rigorously show that the Jacobi expansion for a more general class of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Phi\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Φ<!-- Φ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"log n\"> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\log n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"35 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise error estimates and local superconvergence of Jacobi expansions\",\"authors\":\"Shuhuang Xiang, Desong Kong, Guidong Liu, Li-Lian Wang\",\"doi\":\"10.1090/mcom/3835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue x minus a EndAbsoluteValue\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>a</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|x-a|</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue a EndAbsoluteValue greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>a</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|a|>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"95\\\"> <mml:semantics> <mml:mn>95</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">95%</mml:annotation> </mml:semantics> </mml:math> </inline-formula> range of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket negative 1 comma 1 right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> except for a small neighbourhood near the singular point <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x equals a period\\\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mi>a</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x=a.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> In this paper, we rigorously show that the Jacobi expansion for a more general class of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Phi\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Φ<!-- Φ --></mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"log n\\\"> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\log n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3835\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3835","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
作为多项式插值和正交的一个神话,Trefethen[数学]。Today (Southend-on-Sea) 47 (2011), pp. 184-188]揭示了|x−a| |x-a|的切比雪夫插值(与| a| &gt;1 |a|&gt;1)在克伦肖-柯蒂斯点上的误差比最佳多项式近似(在最大范数中)在大约95 95的误差要小得多% range of [ − 1 , 1 ] [-1,1] except for a small neighbourhood near the singular point x = a . x=a. In this paper, we rigorously show that the Jacobi expansion for a more general class of Φ \Phi -functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired log n \log n -factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.
Pointwise error estimates and local superconvergence of Jacobi expansions
As one myth of polynomial interpolation and quadrature, Trefethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that the Chebyshev interpolation of |x−a||x-a| (with |a|>1|a|>1) at the Clenshaw-Curtis points exhibited a much smaller error than the best polynomial approximation (in the maximum norm) in about 9595% range of [−1,1][-1,1] except for a small neighbourhood near the singular point x=a.x=a. In this paper, we rigorously show that the Jacobi expansion for a more general class of Φ\Phi-functions also enjoys such a local convergence behaviour. Our assertion draws on the pointwise error estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type formula on the asymptotic of the Bessel transforms. We also study the local superconvergence and show the gain in order and the subregions it occurs. As a by-product of this new argument, the undesired logn\log n-factor in the pointwise error estimate for the Legendre expansion recently stated in Babus̆ka and Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can be removed. Finally, all these estimates are extended to the functions with boundary singularities. We provide ample numerical evidences to demonstrate the optimality and sharpness of the estimates.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.