乡土黑曲霉对兰喀特石英砂的生物净化研究

IF 2.8 Q2 MINING & MINERAL PROCESSING
Sri Handayani, Reginawanti Hindersah, Sunbaek Bang, Rhazista Noviardi
{"title":"乡土黑曲霉对兰喀特石英砂的生物净化研究","authors":"Sri Handayani, Reginawanti Hindersah, Sunbaek Bang, Rhazista Noviardi","doi":"10.33271/mining17.03.119","DOIUrl":null,"url":null,"abstract":"Purpose. This research aims to characterize the Langkat quartz mineral, especially its impurities, and to study the effectiveness of fungal-based leaching methods to purify the mineral in order to improve the quartz quality for high-tech industrial applications. Methods. Quartz was firstly analyzed to identify the mineral and chemical impurities. Quartz purification and beneficiation was performed by direct bioleaching using live indigenous Aspergillus niger, indirect bioleaching using metabolic lixiviant of the fungus, and chemical leaching using analytical grade oxalic acid. Findings. The mineral composition of the Langkat quartz deposit is dominated by quartz mineral (93%) with minor amounts of orthoclase feldspar (KAlSi3O8, 5%) and calcite (CaCO3, 2%). The chemical composition comprises 98.1% SiO2 with metal impurities of 0.8% Fe2O3, 0.29% Al2O3, 0.03% NiO, 0.028% Cr2O3 and 0.063% CuO, indicating that quartz is still not enough for advanced material production industry. The bioleaching process removes up to 98% of iron (Fe2O3) from the original quartz sample, and completely removes other metals within eight days of the process by direct bioleaching and eight hours by indirect bioleaching. The content of Fe2O3 and other metals in the treated quartz meets the specifications of high purity quartz (≤ 0.05%) for advanced material production industry. Meanwhile, chemical leaching using 0.2 M oxalic acid removes 96.9% of iron and 92.8% of aluminium. Originality. Comparison of the bioleaching potential of present indigenous Aspergillus niger with some of the previous studies shows that this strain has a higher ability to remove metal impurities from quartz in a much shorter processing time (8 hours instead of weeks or months) than most of the previously published microorganisms. Practical implications. The experimental result of this research provides significant potential for using a fungus-based purification approach to obtain high-purity quartz to be used in a high-value-added modern commercial product.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":"29 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biobeneficiation of Langkat quartz sand by using indigenous Aspergillus niger fungus\",\"authors\":\"Sri Handayani, Reginawanti Hindersah, Sunbaek Bang, Rhazista Noviardi\",\"doi\":\"10.33271/mining17.03.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. This research aims to characterize the Langkat quartz mineral, especially its impurities, and to study the effectiveness of fungal-based leaching methods to purify the mineral in order to improve the quartz quality for high-tech industrial applications. Methods. Quartz was firstly analyzed to identify the mineral and chemical impurities. Quartz purification and beneficiation was performed by direct bioleaching using live indigenous Aspergillus niger, indirect bioleaching using metabolic lixiviant of the fungus, and chemical leaching using analytical grade oxalic acid. Findings. The mineral composition of the Langkat quartz deposit is dominated by quartz mineral (93%) with minor amounts of orthoclase feldspar (KAlSi3O8, 5%) and calcite (CaCO3, 2%). The chemical composition comprises 98.1% SiO2 with metal impurities of 0.8% Fe2O3, 0.29% Al2O3, 0.03% NiO, 0.028% Cr2O3 and 0.063% CuO, indicating that quartz is still not enough for advanced material production industry. The bioleaching process removes up to 98% of iron (Fe2O3) from the original quartz sample, and completely removes other metals within eight days of the process by direct bioleaching and eight hours by indirect bioleaching. The content of Fe2O3 and other metals in the treated quartz meets the specifications of high purity quartz (≤ 0.05%) for advanced material production industry. Meanwhile, chemical leaching using 0.2 M oxalic acid removes 96.9% of iron and 92.8% of aluminium. Originality. Comparison of the bioleaching potential of present indigenous Aspergillus niger with some of the previous studies shows that this strain has a higher ability to remove metal impurities from quartz in a much shorter processing time (8 hours instead of weeks or months) than most of the previously published microorganisms. Practical implications. The experimental result of this research provides significant potential for using a fungus-based purification approach to obtain high-purity quartz to be used in a high-value-added modern commercial product.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining17.03.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.03.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

目的。本研究旨在对Langkat石英矿物,特别是其杂质进行表征,并研究真菌浸出方法纯化矿物的有效性,以提高高技术工业应用的石英质量。方法。首先对石英进行分析,确定矿物和化学杂质。石英的提纯和选矿采用原生活黑曲霉直接生物浸出、真菌代谢浸出剂间接生物浸出和分析级草酸化学浸出。发现。Langkat石英矿床矿物组成以石英矿物为主(93%),少量正长石(KAlSi3O8, 5%)和方解石(CaCO3, 2%)。化学成分为98.1%的SiO2,金属杂质为0.8%的Fe2O3、0.29%的Al2O3、0.03%的NiO、0.028%的Cr2O3和0.063%的CuO,表明石英仍不足以用于先进材料生产工业。生物浸出过程从原始石英样品中去除高达98%的铁(Fe2O3),并在8天内通过直接生物浸出和8小时内通过间接生物浸出完全去除其他金属。处理后的石英中Fe2O3等金属含量满足先进材料生产行业对高纯石英(≤0.05%)的要求。同时,0.2 M草酸化学浸出法对铁和铝的去除率分别为96.9%和92.8%。创意。将目前本土黑曲霉的生物浸出潜力与先前的一些研究进行比较,表明该菌株在更短的处理时间内(8小时而不是几周或几个月)比大多数先前发表的微生物具有更高的从石英中去除金属杂质的能力。实际意义。本研究的实验结果为使用基于真菌的纯化方法获得高纯度石英提供了巨大的潜力,这些石英可用于高附加值的现代商业产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biobeneficiation of Langkat quartz sand by using indigenous Aspergillus niger fungus
Purpose. This research aims to characterize the Langkat quartz mineral, especially its impurities, and to study the effectiveness of fungal-based leaching methods to purify the mineral in order to improve the quartz quality for high-tech industrial applications. Methods. Quartz was firstly analyzed to identify the mineral and chemical impurities. Quartz purification and beneficiation was performed by direct bioleaching using live indigenous Aspergillus niger, indirect bioleaching using metabolic lixiviant of the fungus, and chemical leaching using analytical grade oxalic acid. Findings. The mineral composition of the Langkat quartz deposit is dominated by quartz mineral (93%) with minor amounts of orthoclase feldspar (KAlSi3O8, 5%) and calcite (CaCO3, 2%). The chemical composition comprises 98.1% SiO2 with metal impurities of 0.8% Fe2O3, 0.29% Al2O3, 0.03% NiO, 0.028% Cr2O3 and 0.063% CuO, indicating that quartz is still not enough for advanced material production industry. The bioleaching process removes up to 98% of iron (Fe2O3) from the original quartz sample, and completely removes other metals within eight days of the process by direct bioleaching and eight hours by indirect bioleaching. The content of Fe2O3 and other metals in the treated quartz meets the specifications of high purity quartz (≤ 0.05%) for advanced material production industry. Meanwhile, chemical leaching using 0.2 M oxalic acid removes 96.9% of iron and 92.8% of aluminium. Originality. Comparison of the bioleaching potential of present indigenous Aspergillus niger with some of the previous studies shows that this strain has a higher ability to remove metal impurities from quartz in a much shorter processing time (8 hours instead of weeks or months) than most of the previously published microorganisms. Practical implications. The experimental result of this research provides significant potential for using a fungus-based purification approach to obtain high-purity quartz to be used in a high-value-added modern commercial product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信