{"title":"利用统计和深度学习方法预测农业投入价格指数","authors":"Cevher Özden","doi":"10.24925/turjaf.v11i9.1751-1755.6359","DOIUrl":null,"url":null,"abstract":"Tarımsal Girdi Fiyat Endeksi, mevcut tarımsal üretimde kullanılan ürün ve hizmetlerin fiyatlarındaki değişimlerin ve geleceğe yönelik yatırımların takibi amacıyla Türkiye İstatistik Kurumu (TÜİK) tarafından her ay hesaplanıp yayınlanmaktadır. İndeksin tahmini tarım üreticilerinin yatırım kararlarında ve ürün tercihlerinde zamanında karar almalarına imkan sağlayacak, yurt içi ve uluslararası pazarda rekabet güçlerini arttıracaktır. Bu çalışmada Tarımsal Girdi Fiyat Endeksi'ndeki değişimleri tahmin etmek amacıyla istatistiksel (ARIMA, SARIMA) ve derin öğrenme modelleri (CNN, LSTM) kullanılmıştır. CNN ve LSTM modellerinin hem doğrusal hem de doğrusal olmayan veri özelliklerini yakaladığı bilinmektedir. Tahmin sonuçları, Ortalama Karekök Hata (RMSE) ve Ortalama Karesel Hata (MSE) metrikleri ile değerlendirilmiştir. Çalışma sonuçlarına göre ARIMA (RMSE: 0.16409, MSE: 0.0269247) ve CNN (RMSE: 0.16994, MSE: 0.288791) modelleri en iyi sonuçları elde etmiş olup, bunları LSTM modeli takip etmektedir.","PeriodicalId":23389,"journal":{"name":"Turkish Journal of Agriculture: Food Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"İstatistiksel ve Derin Öğrenme Yöntemlerini Kullanarak Tarımsal Girdi Fiyat Endeksi'nin Tahmin Edilmesi\",\"authors\":\"Cevher Özden\",\"doi\":\"10.24925/turjaf.v11i9.1751-1755.6359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tarımsal Girdi Fiyat Endeksi, mevcut tarımsal üretimde kullanılan ürün ve hizmetlerin fiyatlarındaki değişimlerin ve geleceğe yönelik yatırımların takibi amacıyla Türkiye İstatistik Kurumu (TÜİK) tarafından her ay hesaplanıp yayınlanmaktadır. İndeksin tahmini tarım üreticilerinin yatırım kararlarında ve ürün tercihlerinde zamanında karar almalarına imkan sağlayacak, yurt içi ve uluslararası pazarda rekabet güçlerini arttıracaktır. Bu çalışmada Tarımsal Girdi Fiyat Endeksi'ndeki değişimleri tahmin etmek amacıyla istatistiksel (ARIMA, SARIMA) ve derin öğrenme modelleri (CNN, LSTM) kullanılmıştır. CNN ve LSTM modellerinin hem doğrusal hem de doğrusal olmayan veri özelliklerini yakaladığı bilinmektedir. Tahmin sonuçları, Ortalama Karekök Hata (RMSE) ve Ortalama Karesel Hata (MSE) metrikleri ile değerlendirilmiştir. Çalışma sonuçlarına göre ARIMA (RMSE: 0.16409, MSE: 0.0269247) ve CNN (RMSE: 0.16994, MSE: 0.288791) modelleri en iyi sonuçları elde etmiş olup, bunları LSTM modeli takip etmektedir.\",\"PeriodicalId\":23389,\"journal\":{\"name\":\"Turkish Journal of Agriculture: Food Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Agriculture: Food Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24925/turjaf.v11i9.1751-1755.6359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Agriculture: Food Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24925/turjaf.v11i9.1751-1755.6359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
İstatistiksel ve Derin Öğrenme Yöntemlerini Kullanarak Tarımsal Girdi Fiyat Endeksi'nin Tahmin Edilmesi
Tarımsal Girdi Fiyat Endeksi, mevcut tarımsal üretimde kullanılan ürün ve hizmetlerin fiyatlarındaki değişimlerin ve geleceğe yönelik yatırımların takibi amacıyla Türkiye İstatistik Kurumu (TÜİK) tarafından her ay hesaplanıp yayınlanmaktadır. İndeksin tahmini tarım üreticilerinin yatırım kararlarında ve ürün tercihlerinde zamanında karar almalarına imkan sağlayacak, yurt içi ve uluslararası pazarda rekabet güçlerini arttıracaktır. Bu çalışmada Tarımsal Girdi Fiyat Endeksi'ndeki değişimleri tahmin etmek amacıyla istatistiksel (ARIMA, SARIMA) ve derin öğrenme modelleri (CNN, LSTM) kullanılmıştır. CNN ve LSTM modellerinin hem doğrusal hem de doğrusal olmayan veri özelliklerini yakaladığı bilinmektedir. Tahmin sonuçları, Ortalama Karekök Hata (RMSE) ve Ortalama Karesel Hata (MSE) metrikleri ile değerlendirilmiştir. Çalışma sonuçlarına göre ARIMA (RMSE: 0.16409, MSE: 0.0269247) ve CNN (RMSE: 0.16994, MSE: 0.288791) modelleri en iyi sonuçları elde etmiş olup, bunları LSTM modeli takip etmektedir.