从岩土安全的角度对露天煤矿进行地质力学研究

IF 2.8 Q2 MINING & MINERAL PROCESSING
Hysen Ahmeti, Edon Maliqi
{"title":"从岩土安全的角度对露天煤矿进行地质力学研究","authors":"Hysen Ahmeti, Edon Maliqi","doi":"10.33271/mining17.03.022","DOIUrl":null,"url":null,"abstract":"Purpose. The purpose of the present study is to determine the geomechanical parameters for calculating the stability of side slopes by partial and general angle in the working front to ensure the completeness of coal mining in accordance with geotechnical rules and standards based on the regulations (EC-7) of the Kosovo Energy Corporation, which is the state corporation, producing not only electricity in the Republic of Kosovo. Methods. In the course of the present study, 60 additional drillings were carried out to a depth of 150 m up to green clay contact to determine the coal thickness. It was realized using a Type EK-650 drilling machine and a drilling diameter of 145/101 mm. To determine the angle φ and cohesion C, two methods were used, such as the Direct test and the Triaxial test. To obtain the most accurate results, a mathematical model was used to derive geomechanical parameters for calculating the slope geometry for the design geometry, where coal is mined to achieve a safety factor according to geotechnical standards. Findings. The regularities of changes in surface gloss of facing stone after its chemical treatment have been specified. It has been proved that all chemical impregnations increases stone gloss; the lower the initial indices of the natural stone surface gloss are, the greater stone changes are observed. In turn, that is caused by the fact that each type of natural stone has its own gloss limit. The regularities of lightness changes and surface saturation of natural facing stone after chemical treatment have been defined. They indicate that all agents reduce lightness and increase saturation of the natural stone surface (except Impregnation agent 3). According to the identified regularities, it is possible to control quality indices of the natural stone surface with simultaneous provision of uniform colour shade of a stone-faced building. The main problem arising during the study of surfaces of natural stone samples by means of infrared spectroscopy was inhomogeneity of its mineral-chemical composition over the sample area. As a result, various spectra have been obtained that are difficult to identify without the prepared reference samples. Complete infrared spectra of the natural stone surfaces of Pokostivskyi granodiorite and Bukivskyi gabbro. Both Pokostivskyi granodiorite and Bukivskyi gabbro have different infrared spectra within the analyzed range of wavelengths that can be explained by the difference in mineralogical composition of both natural stone types. Originality. A large number of physical-mechanical parameters were analyzed, including a mathematical model, with which the slope geometry was calculated using the design profiles and 9 methods. This has given satisfactory results based on Eurocode EC-7 which can be implemented in the field. Practical implications. To analyze the numerical and analytical methods for the design slope geometry, geotechnical Eurocodes were used according to two standards: Eurocode EC7-1 for geotechnical designs and Eurocode EC7-2 for field verification. They were tested on two factors: Category of terrain and Category of objects (excavator), to remove the coal cover using technology in compliance with the conditions in the field, such as the presence of surface water, underground waters and tectonics. This whole analysis is time consuming, so a safety factor has been determined based on the numerical analysis data.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":"67 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geomechanical research into surface coal mining in terms of geotechnical safety substantiation\",\"authors\":\"Hysen Ahmeti, Edon Maliqi\",\"doi\":\"10.33271/mining17.03.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. The purpose of the present study is to determine the geomechanical parameters for calculating the stability of side slopes by partial and general angle in the working front to ensure the completeness of coal mining in accordance with geotechnical rules and standards based on the regulations (EC-7) of the Kosovo Energy Corporation, which is the state corporation, producing not only electricity in the Republic of Kosovo. Methods. In the course of the present study, 60 additional drillings were carried out to a depth of 150 m up to green clay contact to determine the coal thickness. It was realized using a Type EK-650 drilling machine and a drilling diameter of 145/101 mm. To determine the angle φ and cohesion C, two methods were used, such as the Direct test and the Triaxial test. To obtain the most accurate results, a mathematical model was used to derive geomechanical parameters for calculating the slope geometry for the design geometry, where coal is mined to achieve a safety factor according to geotechnical standards. Findings. The regularities of changes in surface gloss of facing stone after its chemical treatment have been specified. It has been proved that all chemical impregnations increases stone gloss; the lower the initial indices of the natural stone surface gloss are, the greater stone changes are observed. In turn, that is caused by the fact that each type of natural stone has its own gloss limit. The regularities of lightness changes and surface saturation of natural facing stone after chemical treatment have been defined. They indicate that all agents reduce lightness and increase saturation of the natural stone surface (except Impregnation agent 3). According to the identified regularities, it is possible to control quality indices of the natural stone surface with simultaneous provision of uniform colour shade of a stone-faced building. The main problem arising during the study of surfaces of natural stone samples by means of infrared spectroscopy was inhomogeneity of its mineral-chemical composition over the sample area. As a result, various spectra have been obtained that are difficult to identify without the prepared reference samples. Complete infrared spectra of the natural stone surfaces of Pokostivskyi granodiorite and Bukivskyi gabbro. Both Pokostivskyi granodiorite and Bukivskyi gabbro have different infrared spectra within the analyzed range of wavelengths that can be explained by the difference in mineralogical composition of both natural stone types. Originality. A large number of physical-mechanical parameters were analyzed, including a mathematical model, with which the slope geometry was calculated using the design profiles and 9 methods. This has given satisfactory results based on Eurocode EC-7 which can be implemented in the field. Practical implications. To analyze the numerical and analytical methods for the design slope geometry, geotechnical Eurocodes were used according to two standards: Eurocode EC7-1 for geotechnical designs and Eurocode EC7-2 for field verification. They were tested on two factors: Category of terrain and Category of objects (excavator), to remove the coal cover using technology in compliance with the conditions in the field, such as the presence of surface water, underground waters and tectonics. This whole analysis is time consuming, so a safety factor has been determined based on the numerical analysis data.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining17.03.022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.03.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

目的。本研究的目的是确定地质力学参数,用于计算工作前沿的部分和一般角度边坡的稳定性,以确保按照基于科索沃能源公司(科索沃能源公司是一家国有公司,不仅在科索沃共和国生产电力)法规(EC-7)的岩土规则和标准进行煤炭开采的完整性。方法。在本研究过程中,为了确定煤的厚度,在150米深的绿色粘土接触处进行了60次额外的钻孔。采用EK-650型钻孔机,钻孔直径为145/101毫米。角φ和黏聚力C的确定采用了直接试验和三轴试验两种方法。为了获得最准确的结果,利用数学模型推导地质力学参数,计算设计几何形状的边坡几何形状,并根据岩土工程标准开采煤炭以获得安全系数。发现。阐述了饰面石经化学处理后表面光泽度变化的规律。事实证明,所有化学浸渍都能增加石材的光泽;天然石材表面光泽度的初始指标越低,观察到的石材变化越大。反过来,这是由于每种天然石材都有自己的光泽限制。确定了天然饰面石经化学处理后亮度变化和表面饱和度的规律。结果表明,除浸渍剂3外,所有的药剂都降低了天然石材表面的亮度,增加了天然石材表面的饱和度。根据确定的规律,可以在控制天然石材表面质量指标的同时提供石材建筑的均匀色度。利用红外光谱对天然石材样品表面进行研究时,存在的主要问题是其矿物化学成分在样品区域内的不均匀性。结果,得到了各种光谱,没有制备的参考样品难以识别。pokostivsky花岗闪长岩和bukivsky辉长岩天然石材表面的完整红外光谱。Pokostivskyi花岗闪长岩和Bukivskyi辉长岩在分析波长范围内具有不同的红外光谱,这可以用两种天然岩石类型的矿物组成差异来解释。创意。分析了大量的物理力学参数,建立了数学模型,并利用设计剖面和9种方法计算了边坡的几何形状。在欧洲规范EC-7的基础上取得了满意的结果,可以在现场实施。实际意义。为了分析设计边坡几何形状的数值和解析方法,根据岩土工程设计的欧洲规范EC7-1和现场验证的欧洲规范EC7-2两个标准使用了岩土工程欧洲规范。在地形类别和物体类别(挖掘机)两方面进行了试验,采用符合现场地表水、地下水和构造等条件的技术去除煤盖。由于整个分析过程耗时较长,因此根据数值分析数据确定了安全系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geomechanical research into surface coal mining in terms of geotechnical safety substantiation
Purpose. The purpose of the present study is to determine the geomechanical parameters for calculating the stability of side slopes by partial and general angle in the working front to ensure the completeness of coal mining in accordance with geotechnical rules and standards based on the regulations (EC-7) of the Kosovo Energy Corporation, which is the state corporation, producing not only electricity in the Republic of Kosovo. Methods. In the course of the present study, 60 additional drillings were carried out to a depth of 150 m up to green clay contact to determine the coal thickness. It was realized using a Type EK-650 drilling machine and a drilling diameter of 145/101 mm. To determine the angle φ and cohesion C, two methods were used, such as the Direct test and the Triaxial test. To obtain the most accurate results, a mathematical model was used to derive geomechanical parameters for calculating the slope geometry for the design geometry, where coal is mined to achieve a safety factor according to geotechnical standards. Findings. The regularities of changes in surface gloss of facing stone after its chemical treatment have been specified. It has been proved that all chemical impregnations increases stone gloss; the lower the initial indices of the natural stone surface gloss are, the greater stone changes are observed. In turn, that is caused by the fact that each type of natural stone has its own gloss limit. The regularities of lightness changes and surface saturation of natural facing stone after chemical treatment have been defined. They indicate that all agents reduce lightness and increase saturation of the natural stone surface (except Impregnation agent 3). According to the identified regularities, it is possible to control quality indices of the natural stone surface with simultaneous provision of uniform colour shade of a stone-faced building. The main problem arising during the study of surfaces of natural stone samples by means of infrared spectroscopy was inhomogeneity of its mineral-chemical composition over the sample area. As a result, various spectra have been obtained that are difficult to identify without the prepared reference samples. Complete infrared spectra of the natural stone surfaces of Pokostivskyi granodiorite and Bukivskyi gabbro. Both Pokostivskyi granodiorite and Bukivskyi gabbro have different infrared spectra within the analyzed range of wavelengths that can be explained by the difference in mineralogical composition of both natural stone types. Originality. A large number of physical-mechanical parameters were analyzed, including a mathematical model, with which the slope geometry was calculated using the design profiles and 9 methods. This has given satisfactory results based on Eurocode EC-7 which can be implemented in the field. Practical implications. To analyze the numerical and analytical methods for the design slope geometry, geotechnical Eurocodes were used according to two standards: Eurocode EC7-1 for geotechnical designs and Eurocode EC7-2 for field verification. They were tested on two factors: Category of terrain and Category of objects (excavator), to remove the coal cover using technology in compliance with the conditions in the field, such as the presence of surface water, underground waters and tectonics. This whole analysis is time consuming, so a safety factor has been determined based on the numerical analysis data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信