Omni-Modeler:动态学习的快速自适应视觉识别

Michael Karnes, Alper Yilmaz
{"title":"Omni-Modeler:动态学习的快速自适应视觉识别","authors":"Michael Karnes, Alper Yilmaz","doi":"10.5121/sipij.2023.14501","DOIUrl":null,"url":null,"abstract":"Deep neural network (DNN) image classification has grown rapidly as a general pattern detection tool for an extremely diverse set of applications; yet dataset accessibility remains a major limiting factor for many applications. This paper presents a novel dynamic learning approach to leverage pretrained knowledge to novel image spaces in the effort to extend the algorithm knowledge domain and reduce dataset collection requirements. The proposed Omni-Modeler generates a dynamic knowledge set by reshaping known concepts to create dynamic representation models of unknown concepts. The Omni-Modeler embeds images with a pretrained DNN and formulates compressed language encoder. The language encoded feature space is then used to rapidly generate a dynamic dictionary of concept appearance models. The results of this study demonstrate the Omni-Modeler capability to rapidly adapt across a range of image types enabling the usage of dynamically learning image classification with limited data availability.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"197 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning\",\"authors\":\"Michael Karnes, Alper Yilmaz\",\"doi\":\"10.5121/sipij.2023.14501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network (DNN) image classification has grown rapidly as a general pattern detection tool for an extremely diverse set of applications; yet dataset accessibility remains a major limiting factor for many applications. This paper presents a novel dynamic learning approach to leverage pretrained knowledge to novel image spaces in the effort to extend the algorithm knowledge domain and reduce dataset collection requirements. The proposed Omni-Modeler generates a dynamic knowledge set by reshaping known concepts to create dynamic representation models of unknown concepts. The Omni-Modeler embeds images with a pretrained DNN and formulates compressed language encoder. The language encoded feature space is then used to rapidly generate a dynamic dictionary of concept appearance models. The results of this study demonstrate the Omni-Modeler capability to rapidly adapt across a range of image types enabling the usage of dynamically learning image classification with limited data availability.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"197 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/sipij.2023.14501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2023.14501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络(DNN)图像分类已经迅速发展成为一种通用的模式检测工具,用于极其多样化的应用;然而,数据集可访问性仍然是许多应用程序的主要限制因素。本文提出了一种新的动态学习方法,将预训练的知识应用于新的图像空间,以扩展算法的知识域并减少数据集收集需求。提出的Omni-Modeler通过重塑已知概念来创建未知概念的动态表示模型,从而生成动态知识集。Omni-Modeler使用预训练的DNN嵌入图像,并制定压缩语言编码器。然后使用语言编码的特征空间快速生成概念外观模型的动态字典。本研究的结果表明,Omni-Modeler能够快速适应一系列图像类型,从而在有限的数据可用性下使用动态学习图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Omni-Modeler: Rapid Adaptive Visual Recognition with Dynamic Learning
Deep neural network (DNN) image classification has grown rapidly as a general pattern detection tool for an extremely diverse set of applications; yet dataset accessibility remains a major limiting factor for many applications. This paper presents a novel dynamic learning approach to leverage pretrained knowledge to novel image spaces in the effort to extend the algorithm knowledge domain and reduce dataset collection requirements. The proposed Omni-Modeler generates a dynamic knowledge set by reshaping known concepts to create dynamic representation models of unknown concepts. The Omni-Modeler embeds images with a pretrained DNN and formulates compressed language encoder. The language encoded feature space is then used to rapidly generate a dynamic dictionary of concept appearance models. The results of this study demonstrate the Omni-Modeler capability to rapidly adapt across a range of image types enabling the usage of dynamically learning image classification with limited data availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信