Amal S. Alali, Hafedh Alnoghashi, Junaid Nisar, Nadeem ur Rehman, Faez A. Alqarni
{"title":"关于素环上的偏导和反自同构","authors":"Amal S. Alali, Hafedh Alnoghashi, Junaid Nisar, Nadeem ur Rehman, Faez A. Alqarni","doi":"10.1515/gmj-2023-2082","DOIUrl":null,"url":null,"abstract":"Abstract According to Posner’s second theorem, a prime ring is forced to be commutative if a nonzero centralizing derivation exists on it. In this article, we extend this result to prime rings with antiautomorphisms and nonzero skew derivations. Additionally, a case is shown to demonstrate that the restrictions placed on the theorems’ hypothesis were not unnecessary.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On skew derivations and antiautomorphisms in prime rings\",\"authors\":\"Amal S. Alali, Hafedh Alnoghashi, Junaid Nisar, Nadeem ur Rehman, Faez A. Alqarni\",\"doi\":\"10.1515/gmj-2023-2082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract According to Posner’s second theorem, a prime ring is forced to be commutative if a nonzero centralizing derivation exists on it. In this article, we extend this result to prime rings with antiautomorphisms and nonzero skew derivations. Additionally, a case is shown to demonstrate that the restrictions placed on the theorems’ hypothesis were not unnecessary.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On skew derivations and antiautomorphisms in prime rings
Abstract According to Posner’s second theorem, a prime ring is forced to be commutative if a nonzero centralizing derivation exists on it. In this article, we extend this result to prime rings with antiautomorphisms and nonzero skew derivations. Additionally, a case is shown to demonstrate that the restrictions placed on the theorems’ hypothesis were not unnecessary.