{"title":"在随机分布的噪声下,通过多次重复观测提取信息","authors":"Min Zhong, Xinyan Li, Xiaoman Liu","doi":"10.1515/jiip-2022-0063","DOIUrl":null,"url":null,"abstract":"Abstract Extracting the useful information has been used almost everywhere in many fields of mathematics and applied mathematics. It is a classical ill-posed problem due to the unstable dependence of approximations on small perturbation of the data. The traditional regularization methods depend on the choice of the regularization parameter, which are closely related to an available accurate upper bound of noise level; thus it is not appropriate for the randomly distributed noise with big or unknown variance. In this paper, a purely data driven statistical regularization method is proposed, effectively extracting the information from randomly noisy observations. The rigorous upper bound estimation of confidence interval of the error in L 2 L^{2} norm is established, and some numerical examples are provided to illustrate the effectiveness and computational performance of the method.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"4300 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extract the information via multiple repeated observations under randomly distributed noise\",\"authors\":\"Min Zhong, Xinyan Li, Xiaoman Liu\",\"doi\":\"10.1515/jiip-2022-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Extracting the useful information has been used almost everywhere in many fields of mathematics and applied mathematics. It is a classical ill-posed problem due to the unstable dependence of approximations on small perturbation of the data. The traditional regularization methods depend on the choice of the regularization parameter, which are closely related to an available accurate upper bound of noise level; thus it is not appropriate for the randomly distributed noise with big or unknown variance. In this paper, a purely data driven statistical regularization method is proposed, effectively extracting the information from randomly noisy observations. The rigorous upper bound estimation of confidence interval of the error in L 2 L^{2} norm is established, and some numerical examples are provided to illustrate the effectiveness and computational performance of the method.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"4300 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0063\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extract the information via multiple repeated observations under randomly distributed noise
Abstract Extracting the useful information has been used almost everywhere in many fields of mathematics and applied mathematics. It is a classical ill-posed problem due to the unstable dependence of approximations on small perturbation of the data. The traditional regularization methods depend on the choice of the regularization parameter, which are closely related to an available accurate upper bound of noise level; thus it is not appropriate for the randomly distributed noise with big or unknown variance. In this paper, a purely data driven statistical regularization method is proposed, effectively extracting the information from randomly noisy observations. The rigorous upper bound estimation of confidence interval of the error in L 2 L^{2} norm is established, and some numerical examples are provided to illustrate the effectiveness and computational performance of the method.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography