镧改性BaTi 0.91 Sn 0.09 o3陶瓷的经典到弛豫铁电转变

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Wiwat Pattanakasem, Sasipohn Prasertpalichat, Pathit Premwichit, Naratip Vittayakorn, Theerachai Bongkarn
{"title":"镧改性BaTi 0.91 Sn 0.09 o3陶瓷的经典到弛豫铁电转变","authors":"Wiwat Pattanakasem, Sasipohn Prasertpalichat, Pathit Premwichit, Naratip Vittayakorn, Theerachai Bongkarn","doi":"10.1080/10584587.2023.2234624","DOIUrl":null,"url":null,"abstract":"Abstract Lead-free Ba1-xLaxTi0.91Sn0.09O3 (BLTS) ceramics with x = 0, 0.01, 0.03 and 0.05, were prepared by the traditional solid-state sintering method with calcination and sintering temperatures of 1200 °C for 2 h and 1400 °C for 4 h, respectively. X-ray diffraction (XRD) measurements revealed that all the BLTS ceramics had pure perovskite structures with no detectable impurities. When x = 0 and 0.01, the ceramics exhibited coexisting orthorhombic (O) and tetragonal (T) phases, while the orthorhombic (O), tetragonal (T) and cubic phase (C) were detected in the BLTS ceramics with x = 0.03 and 0.05, which the Rietveld refinement analysis confirmed. Furthermore, increasing x in the BLTS ceramics led to a large decrease in the average grain size (from 45.7 to 0.9 µm). A significant decrease in the remnant polarization (P r) accompanied by very slim hysteresis loops were observed for higher La (x ≥ 0.03) levels. This demonstrates that BLTS ceramics transition from classical ferroelectric to relaxor ferroelectric behavior due to changing occupancy of the A-site to La3+ from Ba2+.","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"215 6","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical to Relaxor Ferroelectric Transformation of Lanthanum Modified BaTi <sub>0.91</sub> Sn <sub>0.09</sub> O <sub>3</sub> Ceramics\",\"authors\":\"Wiwat Pattanakasem, Sasipohn Prasertpalichat, Pathit Premwichit, Naratip Vittayakorn, Theerachai Bongkarn\",\"doi\":\"10.1080/10584587.2023.2234624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Lead-free Ba1-xLaxTi0.91Sn0.09O3 (BLTS) ceramics with x = 0, 0.01, 0.03 and 0.05, were prepared by the traditional solid-state sintering method with calcination and sintering temperatures of 1200 °C for 2 h and 1400 °C for 4 h, respectively. X-ray diffraction (XRD) measurements revealed that all the BLTS ceramics had pure perovskite structures with no detectable impurities. When x = 0 and 0.01, the ceramics exhibited coexisting orthorhombic (O) and tetragonal (T) phases, while the orthorhombic (O), tetragonal (T) and cubic phase (C) were detected in the BLTS ceramics with x = 0.03 and 0.05, which the Rietveld refinement analysis confirmed. Furthermore, increasing x in the BLTS ceramics led to a large decrease in the average grain size (from 45.7 to 0.9 µm). A significant decrease in the remnant polarization (P r) accompanied by very slim hysteresis loops were observed for higher La (x ≥ 0.03) levels. This demonstrates that BLTS ceramics transition from classical ferroelectric to relaxor ferroelectric behavior due to changing occupancy of the A-site to La3+ from Ba2+.\",\"PeriodicalId\":13686,\"journal\":{\"name\":\"Integrated Ferroelectrics\",\"volume\":\"215 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10584587.2023.2234624\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234624","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical to Relaxor Ferroelectric Transformation of Lanthanum Modified BaTi 0.91 Sn 0.09 O 3 Ceramics
Abstract Lead-free Ba1-xLaxTi0.91Sn0.09O3 (BLTS) ceramics with x = 0, 0.01, 0.03 and 0.05, were prepared by the traditional solid-state sintering method with calcination and sintering temperatures of 1200 °C for 2 h and 1400 °C for 4 h, respectively. X-ray diffraction (XRD) measurements revealed that all the BLTS ceramics had pure perovskite structures with no detectable impurities. When x = 0 and 0.01, the ceramics exhibited coexisting orthorhombic (O) and tetragonal (T) phases, while the orthorhombic (O), tetragonal (T) and cubic phase (C) were detected in the BLTS ceramics with x = 0.03 and 0.05, which the Rietveld refinement analysis confirmed. Furthermore, increasing x in the BLTS ceramics led to a large decrease in the average grain size (from 45.7 to 0.9 µm). A significant decrease in the remnant polarization (P r) accompanied by very slim hysteresis loops were observed for higher La (x ≥ 0.03) levels. This demonstrates that BLTS ceramics transition from classical ferroelectric to relaxor ferroelectric behavior due to changing occupancy of the A-site to La3+ from Ba2+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrated Ferroelectrics
Integrated Ferroelectrics 工程技术-工程:电子与电气
CiteScore
1.40
自引率
0.00%
发文量
179
审稿时长
3 months
期刊介绍: Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信