{"title":"多输入神经网络时间序列预测结合历史和未来的背景","authors":"João Palet, Vasco Manquinho, Rui Henriques","doi":"10.1007/s10618-023-00984-y","DOIUrl":null,"url":null,"abstract":"Abstract Individual and societal systems are open systems continuously affected by their situational context. In recent years, context sources have been increasingly considered in different domains to aid short and long-term forecasts of systems’ behavior. Nevertheless, available research generally disregards the role of prospective context, such as calendrical planning or weather forecasts. This work proposes a multiple-input neural architecture consisting of a sequential composition of long short-term memory units or temporal convolutional networks able to incorporate both historical and prospective sources of situational context to aid time series forecasting tasks. Considering urban case studies, we further assess the impact that different sources of external context have on medical emergency and mobility forecasts. Results show that the incorporation of external context variables, including calendrical and weather variables, can significantly reduce forecasting errors against state-of-the-art forecasters. In particular, the incorporation of prospective context, generally neglected in related work, mitigates error increases along the forecasting horizon.","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"11 3","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple-input neural networks for time series forecasting incorporating historical and prospective context\",\"authors\":\"João Palet, Vasco Manquinho, Rui Henriques\",\"doi\":\"10.1007/s10618-023-00984-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Individual and societal systems are open systems continuously affected by their situational context. In recent years, context sources have been increasingly considered in different domains to aid short and long-term forecasts of systems’ behavior. Nevertheless, available research generally disregards the role of prospective context, such as calendrical planning or weather forecasts. This work proposes a multiple-input neural architecture consisting of a sequential composition of long short-term memory units or temporal convolutional networks able to incorporate both historical and prospective sources of situational context to aid time series forecasting tasks. Considering urban case studies, we further assess the impact that different sources of external context have on medical emergency and mobility forecasts. Results show that the incorporation of external context variables, including calendrical and weather variables, can significantly reduce forecasting errors against state-of-the-art forecasters. In particular, the incorporation of prospective context, generally neglected in related work, mitigates error increases along the forecasting horizon.\",\"PeriodicalId\":55183,\"journal\":{\"name\":\"Data Mining and Knowledge Discovery\",\"volume\":\"11 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10618-023-00984-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10618-023-00984-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multiple-input neural networks for time series forecasting incorporating historical and prospective context
Abstract Individual and societal systems are open systems continuously affected by their situational context. In recent years, context sources have been increasingly considered in different domains to aid short and long-term forecasts of systems’ behavior. Nevertheless, available research generally disregards the role of prospective context, such as calendrical planning or weather forecasts. This work proposes a multiple-input neural architecture consisting of a sequential composition of long short-term memory units or temporal convolutional networks able to incorporate both historical and prospective sources of situational context to aid time series forecasting tasks. Considering urban case studies, we further assess the impact that different sources of external context have on medical emergency and mobility forecasts. Results show that the incorporation of external context variables, including calendrical and weather variables, can significantly reduce forecasting errors against state-of-the-art forecasters. In particular, the incorporation of prospective context, generally neglected in related work, mitigates error increases along the forecasting horizon.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.