Yuhan Liu, Kang Ning, Shuting Chen, Menachem Moshelion, Pei Xu
{"title":"提高农艺抗旱性的潜在育种靶基因:产量-生存平衡的观点","authors":"Yuhan Liu, Kang Ning, Shuting Chen, Menachem Moshelion, Pei Xu","doi":"10.1111/pbr.13144","DOIUrl":null,"url":null,"abstract":"Abstract Amidst global climate warming, the urgency to enhance crop drought resistance has reached unprecedented levels. However, the achievement of superior drought‐resistant crop varieties, despite substantial research investments, remains constrained. This limited success in transitioning from the laboratory to the field can be partly attributed to the disparity between evaluating biological and agronomic drought resistance (ADR). ADR places emphasis on minimizing yield losses during drought conditions and maintaining robust performance under normal circumstances. Here, we present a comprehensive overview of ADR genes reported during the past decades, categorized based on their yield performance under both drought and standard growth conditions. We highlight 23 genes from grain and legume crops, providing insight into their working mechanisms. Particularly, we delve into their efficacy in improving yields predominantly through transgenic approaches in field conditions. Furthermore, we briefly touch upon the adoption of emerging phenomics technologies, which can streamline the discovery and application of ADR genes. This review is poised to serve the breeding community, aiding in the selection of appropriate target genes to augment crop drought resistance.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"161 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential breeding target genes for enhancing agronomic drought resistance: A yield‐survival balance perspective\",\"authors\":\"Yuhan Liu, Kang Ning, Shuting Chen, Menachem Moshelion, Pei Xu\",\"doi\":\"10.1111/pbr.13144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Amidst global climate warming, the urgency to enhance crop drought resistance has reached unprecedented levels. However, the achievement of superior drought‐resistant crop varieties, despite substantial research investments, remains constrained. This limited success in transitioning from the laboratory to the field can be partly attributed to the disparity between evaluating biological and agronomic drought resistance (ADR). ADR places emphasis on minimizing yield losses during drought conditions and maintaining robust performance under normal circumstances. Here, we present a comprehensive overview of ADR genes reported during the past decades, categorized based on their yield performance under both drought and standard growth conditions. We highlight 23 genes from grain and legume crops, providing insight into their working mechanisms. Particularly, we delve into their efficacy in improving yields predominantly through transgenic approaches in field conditions. Furthermore, we briefly touch upon the adoption of emerging phenomics technologies, which can streamline the discovery and application of ADR genes. This review is poised to serve the breeding community, aiding in the selection of appropriate target genes to augment crop drought resistance.\",\"PeriodicalId\":20228,\"journal\":{\"name\":\"Plant Breeding\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Breeding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/pbr.13144\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/pbr.13144","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Potential breeding target genes for enhancing agronomic drought resistance: A yield‐survival balance perspective
Abstract Amidst global climate warming, the urgency to enhance crop drought resistance has reached unprecedented levels. However, the achievement of superior drought‐resistant crop varieties, despite substantial research investments, remains constrained. This limited success in transitioning from the laboratory to the field can be partly attributed to the disparity between evaluating biological and agronomic drought resistance (ADR). ADR places emphasis on minimizing yield losses during drought conditions and maintaining robust performance under normal circumstances. Here, we present a comprehensive overview of ADR genes reported during the past decades, categorized based on their yield performance under both drought and standard growth conditions. We highlight 23 genes from grain and legume crops, providing insight into their working mechanisms. Particularly, we delve into their efficacy in improving yields predominantly through transgenic approaches in field conditions. Furthermore, we briefly touch upon the adoption of emerging phenomics technologies, which can streamline the discovery and application of ADR genes. This review is poised to serve the breeding community, aiding in the selection of appropriate target genes to augment crop drought resistance.
期刊介绍:
PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.