{"title":"OIE4PA:面向公共管理的公开信息提取","authors":"Lucia Siciliani, Eleonora Ghizzota, Pierpaolo Basile, Pasquale Lops","doi":"10.1007/s10844-023-00814-z","DOIUrl":null,"url":null,"abstract":"Abstract Tenders are powerful means of investment of public funds and represent a strategic development resource. Despite the efforts made so far by governments at national and international levels to digitalise documents related to the Public Administration sector, most of the information is still available in an unstructured format only. With the aim of bridging this gap, we present OIE4PA, our latest study on extracting and classifying relations from tenders of the Public Administration. Our work focuses on the Italian language, where the availability of linguistic resources to perform Natural Language Processing tasks is considerably limited. Nevertheless, OIE4PA adopts a multilingual approach so it can be applied to several languages by providing appropriate training data. Rather than purely training a classifier on a portion of the extracted relations, the backbone idea of our learning strategy is to put a supervised method based on self-training to the proof and to assess whether or not it improves the performance of the classifier. For evaluation purposes, we built a dataset composed of 2,000 triples which have been manually annotated by two human experts. The in-vitro evaluation shows that OIE4PA achieves a MacroF $$_1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>1</mml:mn> </mml:msub> </mml:math> equal to 0.89 and a 91 $$\\%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> accuracy. In addition, OIE4PA was used as the pillar of a prototype search engine, which has been evaluated through an in-vivo experiment with positive feedback from 32 final users, obtaining a SUS score equal to 83.98 .","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"26 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OIE4PA: open information extraction for the public administration\",\"authors\":\"Lucia Siciliani, Eleonora Ghizzota, Pierpaolo Basile, Pasquale Lops\",\"doi\":\"10.1007/s10844-023-00814-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tenders are powerful means of investment of public funds and represent a strategic development resource. Despite the efforts made so far by governments at national and international levels to digitalise documents related to the Public Administration sector, most of the information is still available in an unstructured format only. With the aim of bridging this gap, we present OIE4PA, our latest study on extracting and classifying relations from tenders of the Public Administration. Our work focuses on the Italian language, where the availability of linguistic resources to perform Natural Language Processing tasks is considerably limited. Nevertheless, OIE4PA adopts a multilingual approach so it can be applied to several languages by providing appropriate training data. Rather than purely training a classifier on a portion of the extracted relations, the backbone idea of our learning strategy is to put a supervised method based on self-training to the proof and to assess whether or not it improves the performance of the classifier. For evaluation purposes, we built a dataset composed of 2,000 triples which have been manually annotated by two human experts. The in-vitro evaluation shows that OIE4PA achieves a MacroF $$_1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mrow /> <mml:mn>1</mml:mn> </mml:msub> </mml:math> equal to 0.89 and a 91 $$\\\\%$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>%</mml:mo> </mml:math> accuracy. In addition, OIE4PA was used as the pillar of a prototype search engine, which has been evaluated through an in-vivo experiment with positive feedback from 32 final users, obtaining a SUS score equal to 83.98 .\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-023-00814-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10844-023-00814-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
招标是公共资金强有力的投资手段,是一种战略性的发展资源。尽管到目前为止,国家和国际各级政府都在努力将与公共行政部门有关的文件数字化,但大多数信息仍然以非结构化格式提供。为了弥合这一差距,我们提出了OIE4PA,这是我们从公共行政投标中提取和分类关系的最新研究。我们的工作重点是意大利语,其中语言资源的可用性来执行自然语言处理任务是相当有限的。然而,OIE4PA采用多语言方法,因此可以通过提供适当的训练数据将其应用于多种语言。我们的学习策略的核心思想不是单纯地在抽取的部分关系上训练分类器,而是将基于自我训练的监督方法用于证明,并评估它是否提高了分类器的性能。为了评估目的,我们建立了一个由2000个三元组组成的数据集,这些三元组由两名人类专家手工注释。体外评价显示OIE4PA的macroof $$_1$$ 1 = 0.89,达到91 $$\%$$ % accuracy. In addition, OIE4PA was used as the pillar of a prototype search engine, which has been evaluated through an in-vivo experiment with positive feedback from 32 final users, obtaining a SUS score equal to 83.98 .
OIE4PA: open information extraction for the public administration
Abstract Tenders are powerful means of investment of public funds and represent a strategic development resource. Despite the efforts made so far by governments at national and international levels to digitalise documents related to the Public Administration sector, most of the information is still available in an unstructured format only. With the aim of bridging this gap, we present OIE4PA, our latest study on extracting and classifying relations from tenders of the Public Administration. Our work focuses on the Italian language, where the availability of linguistic resources to perform Natural Language Processing tasks is considerably limited. Nevertheless, OIE4PA adopts a multilingual approach so it can be applied to several languages by providing appropriate training data. Rather than purely training a classifier on a portion of the extracted relations, the backbone idea of our learning strategy is to put a supervised method based on self-training to the proof and to assess whether or not it improves the performance of the classifier. For evaluation purposes, we built a dataset composed of 2,000 triples which have been manually annotated by two human experts. The in-vitro evaluation shows that OIE4PA achieves a MacroF $$_1$$ 1 equal to 0.89 and a 91 $$\%$$ % accuracy. In addition, OIE4PA was used as the pillar of a prototype search engine, which has been evaluated through an in-vivo experiment with positive feedback from 32 final users, obtaining a SUS score equal to 83.98 .
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.