Zongwu Wang, Wantao Tian, Siyuan Sun, Xing Chen, Haifeng Wang
{"title":"工业废水中铜绿假单胞菌的基因组学和蛋白质组学分析及其对抗生素的耐药性","authors":"Zongwu Wang, Wantao Tian, Siyuan Sun, Xing Chen, Haifeng Wang","doi":"10.3390/separations10110549","DOIUrl":null,"url":null,"abstract":"Industrial wastewater usually contains a large amount of organic and inorganic pollutants, and many microorganisms. However, the types of microorganism present in industrial wastewater are still unclear. The aim of this study was to analyze the physicochemical properties and drug resistance of Pseudomonas aeruginosa isolated from industrial wastewater containing high concentrations of sulfate compounds. Pseudomonas aeruginosa was isolated from industrial wastewater from industrial produce with high concentrations of sulfate and phosphate, and mass spectrometry identification, gene identification, biochemical analysis and genomic and proteomic property identification were carried out. According to the results of matrix-assisted flight mass spectrometry and 16S rDNA sequencing, the isolated bacterium was identified as Pseudomonas aeruginosa, and was positive for reactions of ONPG, ACE, GLU, MNE, etc. Through growth experiments, it can be seen that Pseudomonas aeruginosa had a significant growth rate in the LB medium. Antibiotic sensitivity tests showed that Pseudomonas aeruginosa was susceptible to most antibiotics and moderately resistant to Polymyxin B and Polymyxin E. The drug resistance gene experiment showed that Pseudomonas aeruginosa had the gyrB gene related to antibiotic resistance. Proteomic analysis revealed that six proteins were involved in antibiotic resistance. This experiment isolated Pseudomonas aeruginosa from industrial produce wastewater containing high concentrations of sulfate and phosphate ions, providing a new perspective for further research on the characteristics and drug resistance of microorganisms in industrial wastewater and their potential functions when using them to deal with environmental pollution.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"148 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic and Proteomic Analysis of Pseudomonas aeruginosa Isolated from Industrial Wastewater to Assess Its Resistance to Antibiotics\",\"authors\":\"Zongwu Wang, Wantao Tian, Siyuan Sun, Xing Chen, Haifeng Wang\",\"doi\":\"10.3390/separations10110549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial wastewater usually contains a large amount of organic and inorganic pollutants, and many microorganisms. However, the types of microorganism present in industrial wastewater are still unclear. The aim of this study was to analyze the physicochemical properties and drug resistance of Pseudomonas aeruginosa isolated from industrial wastewater containing high concentrations of sulfate compounds. Pseudomonas aeruginosa was isolated from industrial wastewater from industrial produce with high concentrations of sulfate and phosphate, and mass spectrometry identification, gene identification, biochemical analysis and genomic and proteomic property identification were carried out. According to the results of matrix-assisted flight mass spectrometry and 16S rDNA sequencing, the isolated bacterium was identified as Pseudomonas aeruginosa, and was positive for reactions of ONPG, ACE, GLU, MNE, etc. Through growth experiments, it can be seen that Pseudomonas aeruginosa had a significant growth rate in the LB medium. Antibiotic sensitivity tests showed that Pseudomonas aeruginosa was susceptible to most antibiotics and moderately resistant to Polymyxin B and Polymyxin E. The drug resistance gene experiment showed that Pseudomonas aeruginosa had the gyrB gene related to antibiotic resistance. Proteomic analysis revealed that six proteins were involved in antibiotic resistance. This experiment isolated Pseudomonas aeruginosa from industrial produce wastewater containing high concentrations of sulfate and phosphate ions, providing a new perspective for further research on the characteristics and drug resistance of microorganisms in industrial wastewater and their potential functions when using them to deal with environmental pollution.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/separations10110549\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations10110549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Genomic and Proteomic Analysis of Pseudomonas aeruginosa Isolated from Industrial Wastewater to Assess Its Resistance to Antibiotics
Industrial wastewater usually contains a large amount of organic and inorganic pollutants, and many microorganisms. However, the types of microorganism present in industrial wastewater are still unclear. The aim of this study was to analyze the physicochemical properties and drug resistance of Pseudomonas aeruginosa isolated from industrial wastewater containing high concentrations of sulfate compounds. Pseudomonas aeruginosa was isolated from industrial wastewater from industrial produce with high concentrations of sulfate and phosphate, and mass spectrometry identification, gene identification, biochemical analysis and genomic and proteomic property identification were carried out. According to the results of matrix-assisted flight mass spectrometry and 16S rDNA sequencing, the isolated bacterium was identified as Pseudomonas aeruginosa, and was positive for reactions of ONPG, ACE, GLU, MNE, etc. Through growth experiments, it can be seen that Pseudomonas aeruginosa had a significant growth rate in the LB medium. Antibiotic sensitivity tests showed that Pseudomonas aeruginosa was susceptible to most antibiotics and moderately resistant to Polymyxin B and Polymyxin E. The drug resistance gene experiment showed that Pseudomonas aeruginosa had the gyrB gene related to antibiotic resistance. Proteomic analysis revealed that six proteins were involved in antibiotic resistance. This experiment isolated Pseudomonas aeruginosa from industrial produce wastewater containing high concentrations of sulfate and phosphate ions, providing a new perspective for further research on the characteristics and drug resistance of microorganisms in industrial wastewater and their potential functions when using them to deal with environmental pollution.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization