合成射流对可变几何双进气口漩涡气流的影响

IF 2 3区 工程技术 Q3 MECHANICS
Krishna Kumar Rajnath Yadav, Akshoy Ranjan Paul, Anuj Jain, Firoz Alam
{"title":"合成射流对可变几何双进气口漩涡气流的影响","authors":"Krishna Kumar Rajnath Yadav,&nbsp;Akshoy Ranjan Paul,&nbsp;Anuj Jain,&nbsp;Firoz Alam","doi":"10.1007/s10494-023-00481-8","DOIUrl":null,"url":null,"abstract":"<div><p>Air intakes are an integral part of contemporary passenger and military aircraft engines. Their impact on aerodynamic performance across the entire flight envelope is critical to aircraft flight safety, efficiency, and manoeuvrability, especially at high Mach numbers due to shock waves. The high demand for reductions in aircraft weight and size and enhancements in durability, comfort, and thermal and radar signatures compel researchers and engineers to explore new designs and develop efficient air intakes for high-performance aircraft engines. Although a number of studies on air intake have been conducted and reported in the open literature, there is little information available in the public domain on bifurcated twin air intakes using synthetic jet. As a result, the primary goal of this research is to use computational fluid dynamics modelling to investigate the effects of synthetic jets on swirl inflow variable geometry twin air intake aerodynamic performance over a range of Reynolds numbers. Some important parameters (distortion coefficient, non-uniformity index, swirl coefficient, and static and total pressure coefficients) were investigated. Both static and total pressure recovery have been increased at all swirl numbers. A significant decrease in distortion coefficient and swirl coefficient has also been achieved, reaching a 53% reduction in the distortion coefficient and a 62% reduction in the swirl coefficient. The reduction in the non-uniformity index is achieved by 62% for the controlled flow case. The findings show that synthetic jets are effective in controlling the flow separation in the twin air intakes and enhancing aerodynamic performance.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-023-00481-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of Synthetic Jets on Swirl Inflow in a Variable-Geometry Twin Air-Intake\",\"authors\":\"Krishna Kumar Rajnath Yadav,&nbsp;Akshoy Ranjan Paul,&nbsp;Anuj Jain,&nbsp;Firoz Alam\",\"doi\":\"10.1007/s10494-023-00481-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Air intakes are an integral part of contemporary passenger and military aircraft engines. Their impact on aerodynamic performance across the entire flight envelope is critical to aircraft flight safety, efficiency, and manoeuvrability, especially at high Mach numbers due to shock waves. The high demand for reductions in aircraft weight and size and enhancements in durability, comfort, and thermal and radar signatures compel researchers and engineers to explore new designs and develop efficient air intakes for high-performance aircraft engines. Although a number of studies on air intake have been conducted and reported in the open literature, there is little information available in the public domain on bifurcated twin air intakes using synthetic jet. As a result, the primary goal of this research is to use computational fluid dynamics modelling to investigate the effects of synthetic jets on swirl inflow variable geometry twin air intake aerodynamic performance over a range of Reynolds numbers. Some important parameters (distortion coefficient, non-uniformity index, swirl coefficient, and static and total pressure coefficients) were investigated. Both static and total pressure recovery have been increased at all swirl numbers. A significant decrease in distortion coefficient and swirl coefficient has also been achieved, reaching a 53% reduction in the distortion coefficient and a 62% reduction in the swirl coefficient. The reduction in the non-uniformity index is achieved by 62% for the controlled flow case. The findings show that synthetic jets are effective in controlling the flow separation in the twin air intakes and enhancing aerodynamic performance.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-023-00481-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-023-00481-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00481-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

进气口是当代客机和军用飞机发动机不可分割的一部分。进气口对整个飞行包线内的空气动力性能的影响对飞机的飞行安全、效率和机动性至关重要,特别是在高马赫数情况下的冲击波。对减轻飞机重量和尺寸以及提高耐用性、舒适性、热信号和雷达信号的高要求迫使研究人员和工程师探索新的设计,并为高性能飞机发动机开发高效的进气口。尽管公开文献中已对进气道进行了大量研究和报道,但关于使用合成喷气的分叉双进气道的公开信息却很少。因此,本研究的主要目标是使用计算流体动力学建模来研究合成喷流在雷诺数范围内对漩涡流入可变几何形状双进气口气动性能的影响。对一些重要参数(变形系数、不均匀指数、漩涡系数以及静压和总压系数)进行了研究。在所有漩涡数下,静压和总压恢复系数都有所增加。变形系数和漩涡系数也大幅降低,变形系数降低了 53%,漩涡系数降低了 62%。在流量受控的情况下,不均匀指数降低了 62%。研究结果表明,合成射流能有效控制双进气口的气流分离,提高空气动力性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Synthetic Jets on Swirl Inflow in a Variable-Geometry Twin Air-Intake

Effects of Synthetic Jets on Swirl Inflow in a Variable-Geometry Twin Air-Intake

Air intakes are an integral part of contemporary passenger and military aircraft engines. Their impact on aerodynamic performance across the entire flight envelope is critical to aircraft flight safety, efficiency, and manoeuvrability, especially at high Mach numbers due to shock waves. The high demand for reductions in aircraft weight and size and enhancements in durability, comfort, and thermal and radar signatures compel researchers and engineers to explore new designs and develop efficient air intakes for high-performance aircraft engines. Although a number of studies on air intake have been conducted and reported in the open literature, there is little information available in the public domain on bifurcated twin air intakes using synthetic jet. As a result, the primary goal of this research is to use computational fluid dynamics modelling to investigate the effects of synthetic jets on swirl inflow variable geometry twin air intake aerodynamic performance over a range of Reynolds numbers. Some important parameters (distortion coefficient, non-uniformity index, swirl coefficient, and static and total pressure coefficients) were investigated. Both static and total pressure recovery have been increased at all swirl numbers. A significant decrease in distortion coefficient and swirl coefficient has also been achieved, reaching a 53% reduction in the distortion coefficient and a 62% reduction in the swirl coefficient. The reduction in the non-uniformity index is achieved by 62% for the controlled flow case. The findings show that synthetic jets are effective in controlling the flow separation in the twin air intakes and enhancing aerodynamic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信