{"title":"模拟超级单体中与龙卷风形成有关的表面阻力对表面边界结构和演化的影响","authors":"Qin Jiang, Daniel T. Dawson","doi":"10.1175/mwr-d-23-0050.1","DOIUrl":null,"url":null,"abstract":"Abstract Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"26 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of surface drag on the structure and evolution of surface boundaries associated with tornadogenesis in simulated supercells\",\"authors\":\"Qin Jiang, Daniel T. Dawson\",\"doi\":\"10.1175/mwr-d-23-0050.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-23-0050.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0050.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The impact of surface drag on the structure and evolution of surface boundaries associated with tornadogenesis in simulated supercells
Abstract Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.