{"title":"一种基于动态二硫化物复分解的新型可再加工氯丁橡胶","authors":"Jianliang Jiang, Junxue Zhai, Yanqing Chen, Dongqi Zhao, Yakai Feng","doi":"10.1080/19475411.2023.2258830","DOIUrl":null,"url":null,"abstract":"For sustainable application of chloroprene rubber (CR), a new technology is developed by the vulcanization of CR using 2,2’-dithiodipyridine (DPD) as a cross-linking agent with the reprocessing performance owing to disulfide metathesis. When DPD was incorporated into CR vulcanization, the Menschutkin reaction between allyl chloride group and pyridine group occurred with a maximum exothermic peak at 184°C. The number of effective cross-linking bond at 0.5 phr DPD vulcanizate was higher than that at high DPD content. This vulcanizate showed high tensile strength (11.12 MPa) and elongation at break (1253 ± 120%) owing to the exchangeable disulfide bond in the system. Under the catalysis of triphenylphosphine, the metathesis of disulfide compound was improved obviously, which endowed CR/DPD vulcanizates with good recyclability performance. Disulfide cross-linkage maintains its stability at low temperature, thus ensuring the mechanical stability of CR/DPD vulcanizate under the ambient conditions. Vulcanization and reprocessing of CR/DPD vulcanizate can be conducted with common industrial rubber processing equipment. Such reprocessable chloroprene rubber could have potential application in CR industry, also serve to significantly improve environmental sustainability.","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"27 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel reprocessable chloroprene rubber based on dynamic disulfide metathesis\",\"authors\":\"Jianliang Jiang, Junxue Zhai, Yanqing Chen, Dongqi Zhao, Yakai Feng\",\"doi\":\"10.1080/19475411.2023.2258830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For sustainable application of chloroprene rubber (CR), a new technology is developed by the vulcanization of CR using 2,2’-dithiodipyridine (DPD) as a cross-linking agent with the reprocessing performance owing to disulfide metathesis. When DPD was incorporated into CR vulcanization, the Menschutkin reaction between allyl chloride group and pyridine group occurred with a maximum exothermic peak at 184°C. The number of effective cross-linking bond at 0.5 phr DPD vulcanizate was higher than that at high DPD content. This vulcanizate showed high tensile strength (11.12 MPa) and elongation at break (1253 ± 120%) owing to the exchangeable disulfide bond in the system. Under the catalysis of triphenylphosphine, the metathesis of disulfide compound was improved obviously, which endowed CR/DPD vulcanizates with good recyclability performance. Disulfide cross-linkage maintains its stability at low temperature, thus ensuring the mechanical stability of CR/DPD vulcanizate under the ambient conditions. Vulcanization and reprocessing of CR/DPD vulcanizate can be conducted with common industrial rubber processing equipment. Such reprocessable chloroprene rubber could have potential application in CR industry, also serve to significantly improve environmental sustainability.\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2023.2258830\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2258830","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel reprocessable chloroprene rubber based on dynamic disulfide metathesis
For sustainable application of chloroprene rubber (CR), a new technology is developed by the vulcanization of CR using 2,2’-dithiodipyridine (DPD) as a cross-linking agent with the reprocessing performance owing to disulfide metathesis. When DPD was incorporated into CR vulcanization, the Menschutkin reaction between allyl chloride group and pyridine group occurred with a maximum exothermic peak at 184°C. The number of effective cross-linking bond at 0.5 phr DPD vulcanizate was higher than that at high DPD content. This vulcanizate showed high tensile strength (11.12 MPa) and elongation at break (1253 ± 120%) owing to the exchangeable disulfide bond in the system. Under the catalysis of triphenylphosphine, the metathesis of disulfide compound was improved obviously, which endowed CR/DPD vulcanizates with good recyclability performance. Disulfide cross-linkage maintains its stability at low temperature, thus ensuring the mechanical stability of CR/DPD vulcanizate under the ambient conditions. Vulcanization and reprocessing of CR/DPD vulcanizate can be conducted with common industrial rubber processing equipment. Such reprocessable chloroprene rubber could have potential application in CR industry, also serve to significantly improve environmental sustainability.
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.