Mandeep Singh, Resham Thapa, Navdeep Singh, Steven B. Mirsky, Bharat S. Acharya, Amit J. Jhala
{"title":"窄行距是否能抑制杂草并提高玉米和大豆的产量?一个荟萃分析","authors":"Mandeep Singh, Resham Thapa, Navdeep Singh, Steven B. Mirsky, Bharat S. Acharya, Amit J. Jhala","doi":"10.1017/wsc.2023.50","DOIUrl":null,"url":null,"abstract":"Abstract Narrow row spacing (<76 cm) could improve crop competitiveness, suppress weeds and might provide yield advantage. Many studies have been conducted to evaluate the impact of narrow row spacing; however, no quantitative synthesis of these studies exists. The objectives of this meta-analysis were to (1) quantify the overall effect of narrow row spacing (<76 cm) on weed density, biomass, control, weed seed production, and yield in corn ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] compared with 76-cm row spacing, and (2) assess the influence of agronomic management decisions (tillage type, weed management, herbicide application frequency and time) on effect of narrow row spacing on weed suppression and corn and soybean yield. We compiled 1,904 pair-wise observations from 35 studies conducted in 12 states in the United States during 1961 to 2018. Averaged across individual observations, narrow row spacing suppressed weed density by 34%, weed biomass by 55%, and weed seed production by 45%, while it improved weed control by 32% and crop yield by 11% compared with 76-cm row spacing. Narrow row spacing in soybean suppressed weed density by 42%, weed biomass by 71%, and increased crop yield by 12% compared with 76-cm row spacing. Although narrow row spacing had a nonsignificant effect on response variables in corn, the number of studies ( n = 1 to 6) and observations ( n = 1 to 59) addressing each response variable were limited. Tillage type (conventional and reduced) did not influence the response of weed density, control, and seed production in narrow row spacing; however, weed biomass and weed seed production were more greatly reduced with the sequential application of herbicides compared with a single application. Thus, narrow row spacing in soybean can be integrated with other options for management of herbicide-resistant weeds.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"26 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does narrow row spacing suppress weeds and increase yields in corn and soybean? A meta-analysis\",\"authors\":\"Mandeep Singh, Resham Thapa, Navdeep Singh, Steven B. Mirsky, Bharat S. Acharya, Amit J. Jhala\",\"doi\":\"10.1017/wsc.2023.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Narrow row spacing (<76 cm) could improve crop competitiveness, suppress weeds and might provide yield advantage. Many studies have been conducted to evaluate the impact of narrow row spacing; however, no quantitative synthesis of these studies exists. The objectives of this meta-analysis were to (1) quantify the overall effect of narrow row spacing (<76 cm) on weed density, biomass, control, weed seed production, and yield in corn ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] compared with 76-cm row spacing, and (2) assess the influence of agronomic management decisions (tillage type, weed management, herbicide application frequency and time) on effect of narrow row spacing on weed suppression and corn and soybean yield. We compiled 1,904 pair-wise observations from 35 studies conducted in 12 states in the United States during 1961 to 2018. Averaged across individual observations, narrow row spacing suppressed weed density by 34%, weed biomass by 55%, and weed seed production by 45%, while it improved weed control by 32% and crop yield by 11% compared with 76-cm row spacing. Narrow row spacing in soybean suppressed weed density by 42%, weed biomass by 71%, and increased crop yield by 12% compared with 76-cm row spacing. Although narrow row spacing had a nonsignificant effect on response variables in corn, the number of studies ( n = 1 to 6) and observations ( n = 1 to 59) addressing each response variable were limited. Tillage type (conventional and reduced) did not influence the response of weed density, control, and seed production in narrow row spacing; however, weed biomass and weed seed production were more greatly reduced with the sequential application of herbicides compared with a single application. Thus, narrow row spacing in soybean can be integrated with other options for management of herbicide-resistant weeds.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2023.50\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wsc.2023.50","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Does narrow row spacing suppress weeds and increase yields in corn and soybean? A meta-analysis
Abstract Narrow row spacing (<76 cm) could improve crop competitiveness, suppress weeds and might provide yield advantage. Many studies have been conducted to evaluate the impact of narrow row spacing; however, no quantitative synthesis of these studies exists. The objectives of this meta-analysis were to (1) quantify the overall effect of narrow row spacing (<76 cm) on weed density, biomass, control, weed seed production, and yield in corn ( Zea mays L.) and soybean [ Glycine max (L.) Merr.] compared with 76-cm row spacing, and (2) assess the influence of agronomic management decisions (tillage type, weed management, herbicide application frequency and time) on effect of narrow row spacing on weed suppression and corn and soybean yield. We compiled 1,904 pair-wise observations from 35 studies conducted in 12 states in the United States during 1961 to 2018. Averaged across individual observations, narrow row spacing suppressed weed density by 34%, weed biomass by 55%, and weed seed production by 45%, while it improved weed control by 32% and crop yield by 11% compared with 76-cm row spacing. Narrow row spacing in soybean suppressed weed density by 42%, weed biomass by 71%, and increased crop yield by 12% compared with 76-cm row spacing. Although narrow row spacing had a nonsignificant effect on response variables in corn, the number of studies ( n = 1 to 6) and observations ( n = 1 to 59) addressing each response variable were limited. Tillage type (conventional and reduced) did not influence the response of weed density, control, and seed production in narrow row spacing; however, weed biomass and weed seed production were more greatly reduced with the sequential application of herbicides compared with a single application. Thus, narrow row spacing in soybean can be integrated with other options for management of herbicide-resistant weeds.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.