基于算子分裂的线性微分-代数port- hamilton系统动态迭代

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Andreas Bartel, Michael Günther, Birgit Jacob, Timo Reis
{"title":"基于算子分裂的线性微分-代数port- hamilton系统动态迭代","authors":"Andreas Bartel, Michael Günther, Birgit Jacob, Timo Reis","doi":"10.1007/s00211-023-01369-5","DOIUrl":null,"url":null,"abstract":"Abstract A dynamic iteration scheme for linear differential-algebraic port-Hamiltonian systems based on Lions–Mercier-type operator splitting methods is developed. The dynamic iteration is monotone in the sense that the error is decreasing and no stability conditions are required. The developed iteration scheme is even new for linear port-Hamiltonian systems governed by ODEs. The obtained algorithm is applied to a multibody system and an electrical network.","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"47 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems\",\"authors\":\"Andreas Bartel, Michael Günther, Birgit Jacob, Timo Reis\",\"doi\":\"10.1007/s00211-023-01369-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A dynamic iteration scheme for linear differential-algebraic port-Hamiltonian systems based on Lions–Mercier-type operator splitting methods is developed. The dynamic iteration is monotone in the sense that the error is decreasing and no stability conditions are required. The developed iteration scheme is even new for linear port-Hamiltonian systems governed by ODEs. The obtained algorithm is applied to a multibody system and an electrical network.\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01369-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00211-023-01369-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

摘要提出了一种基于lions - mercier型算子分裂方法的线性微分-代数port- hamilton系统的动态迭代方案。动态迭代是单调的,即误差在减小,不需要稳定性条件。所开发的迭代方案对于由ode控制的线性端口-哈密顿系统来说甚至是新的。将所得算法应用于多体系统和电网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems

Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Abstract A dynamic iteration scheme for linear differential-algebraic port-Hamiltonian systems based on Lions–Mercier-type operator splitting methods is developed. The dynamic iteration is monotone in the sense that the error is decreasing and no stability conditions are required. The developed iteration scheme is even new for linear port-Hamiltonian systems governed by ODEs. The obtained algorithm is applied to a multibody system and an electrical network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信