{"title":"小顶点覆盖有助于数据流上图删除问题的固定参数可跟踪性","authors":"Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, Saket Saurabh","doi":"10.1007/s00224-023-10136-w","DOIUrl":null,"url":null,"abstract":"Abstract In the study of parameterized streaming complexity on graph problems, the main goal is to design streaming algorithms for parameterized problems such that $$\\mathcal {O}(f(k) \\log ^{\\mathcal {O}(1)} n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> space is enough, where f is an arbitrary computable function depending only on the parameter k . However, in the past few years very few positive results have been established. Most of the graph problems that do have streaming algorithms of the above nature are ones where localized checking is required, like Vertex Cover or Maximum Matching parameterized by the size k of the solution we are seeking. Chitnis et al. (SODA’16) have shown that many important parameterized problems that form the backbone of traditional parameterized complexity are known to require $$\\Omega (n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bits of storage for any streaming algorithm; e.g. Feedback Vertex Set , Even Cycle Transversal , Odd Cycle Transversal , Triangle Deletion or the more general $$\\mathcal{F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> - Subgraph Deletion when parameterized by solution size k . Our contribution lies in overcoming the obstacles to efficient parameterized streaming algorithms in graph deletion problems by utilizing the power of parameterization. We focus on the vertex cover size K as the parameter for the parameterized graph deletion problems we consider. In this work, we consider the four most well-studied streaming models: the Ea , Dea , Va (vertex arrival) and Al (adjacency list) models. Surprisingly, the consideration of vertex cover size K in the different models leads to a classification of positive and negative results for problems like $$\\mathcal{F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> - Subgraph Deletion and $$\\mathcal{F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> - Minor Deletion .","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Vertex Cover Helps in Fixed-Parameter Tractability of Graph Deletion Problems over Data Streams\",\"authors\":\"Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, Saket Saurabh\",\"doi\":\"10.1007/s00224-023-10136-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the study of parameterized streaming complexity on graph problems, the main goal is to design streaming algorithms for parameterized problems such that $$\\\\mathcal {O}(f(k) \\\\log ^{\\\\mathcal {O}(1)} n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mo>log</mml:mo> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> space is enough, where f is an arbitrary computable function depending only on the parameter k . However, in the past few years very few positive results have been established. Most of the graph problems that do have streaming algorithms of the above nature are ones where localized checking is required, like Vertex Cover or Maximum Matching parameterized by the size k of the solution we are seeking. Chitnis et al. (SODA’16) have shown that many important parameterized problems that form the backbone of traditional parameterized complexity are known to require $$\\\\Omega (n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> bits of storage for any streaming algorithm; e.g. Feedback Vertex Set , Even Cycle Transversal , Odd Cycle Transversal , Triangle Deletion or the more general $$\\\\mathcal{F}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> - Subgraph Deletion when parameterized by solution size k . Our contribution lies in overcoming the obstacles to efficient parameterized streaming algorithms in graph deletion problems by utilizing the power of parameterization. We focus on the vertex cover size K as the parameter for the parameterized graph deletion problems we consider. In this work, we consider the four most well-studied streaming models: the Ea , Dea , Va (vertex arrival) and Al (adjacency list) models. Surprisingly, the consideration of vertex cover size K in the different models leads to a classification of positive and negative results for problems like $$\\\\mathcal{F}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> - Subgraph Deletion and $$\\\\mathcal{F}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> - Minor Deletion .\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-023-10136-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10136-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
在图问题的参数化流复杂性研究中,主要目标是设计参数化问题的流算法,使得$$\mathcal {O}(f(k) \log ^{\mathcal {O}(1)} n)$$ O (f (k) log O (1) n)空间足够,其中f是一个仅依赖于参数k的任意可计算函数。然而,在过去几年中,取得的积极成果很少。大多数具有上述性质的流算法的图问题都是需要局部检查的问题,例如我们正在寻找的解决方案的大小k参数化的顶点覆盖或最大匹配。Chitnis等人(SODA ' 16)已经表明,许多重要的参数化问题构成了传统参数化复杂性的主干,已知任何流算法都需要$$\Omega (n)$$ Ω (n)位存储;例如,反馈顶点集,偶环截线,奇环截线,三角形删除或更一般的$$\mathcal{F}$$ F -子图删除,当解大小为k参数化时。我们的贡献在于利用参数化的力量克服了有效的参数化流算法在图删除问题中的障碍。我们关注顶点覆盖大小K作为我们考虑的参数化图删除问题的参数。在这项工作中,我们考虑了四种研究得最充分的流模型:Ea, Dea, Va(顶点到达)和Al(邻接表)模型。令人惊讶的是,不同模型中对顶点覆盖大小K的考虑导致了对$$\mathcal{F}$$ F - Subgraph Deletion和$$\mathcal{F}$$ F - Minor Deletion等问题的正面和负面结果的分类。
Small Vertex Cover Helps in Fixed-Parameter Tractability of Graph Deletion Problems over Data Streams
Abstract In the study of parameterized streaming complexity on graph problems, the main goal is to design streaming algorithms for parameterized problems such that $$\mathcal {O}(f(k) \log ^{\mathcal {O}(1)} n)$$ O(f(k)logO(1)n) space is enough, where f is an arbitrary computable function depending only on the parameter k . However, in the past few years very few positive results have been established. Most of the graph problems that do have streaming algorithms of the above nature are ones where localized checking is required, like Vertex Cover or Maximum Matching parameterized by the size k of the solution we are seeking. Chitnis et al. (SODA’16) have shown that many important parameterized problems that form the backbone of traditional parameterized complexity are known to require $$\Omega (n)$$ Ω(n) bits of storage for any streaming algorithm; e.g. Feedback Vertex Set , Even Cycle Transversal , Odd Cycle Transversal , Triangle Deletion or the more general $$\mathcal{F}$$ F - Subgraph Deletion when parameterized by solution size k . Our contribution lies in overcoming the obstacles to efficient parameterized streaming algorithms in graph deletion problems by utilizing the power of parameterization. We focus on the vertex cover size K as the parameter for the parameterized graph deletion problems we consider. In this work, we consider the four most well-studied streaming models: the Ea , Dea , Va (vertex arrival) and Al (adjacency list) models. Surprisingly, the consideration of vertex cover size K in the different models leads to a classification of positive and negative results for problems like $$\mathcal{F}$$ F - Subgraph Deletion and $$\mathcal{F}$$ F - Minor Deletion .
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.