通过低秩更新和插值改进了ParaDiag

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daniel Kressner, Stefano Massei, Junli Zhu
{"title":"通过低秩更新和插值改进了ParaDiag","authors":"Daniel Kressner, Stefano Massei, Junli Zhu","doi":"10.1007/s00211-023-01372-w","DOIUrl":null,"url":null,"abstract":"Abstract This work is concerned with linear matrix equations that arise from the space-time discretization of time-dependent linear partial differential equations (PDEs). Such matrix equations have been considered, for example, in the context of parallel-in-time integration leading to a class of algorithms called ParaDiag. We develop and analyze two novel approaches for the numerical solution of such equations. Our first approach is based on the observation that the modification of these equations performed by ParaDiag in order to solve them in parallel has low rank. Building upon previous work on low-rank updates of matrix equations, this allows us to make use of tensorized Krylov subspace methods to account for the modification. Our second approach is based on interpolating the solution of the matrix equation from the solutions of several modifications. Both approaches avoid the use of iterative refinement needed by ParaDiag and related space-time approaches in order to attain good accuracy. In turn, our new algorithms have the potential to outperform, sometimes significantly, existing methods. This potential is demonstrated for several different types of PDEs.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved ParaDiag via low-rank updates and interpolation\",\"authors\":\"Daniel Kressner, Stefano Massei, Junli Zhu\",\"doi\":\"10.1007/s00211-023-01372-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work is concerned with linear matrix equations that arise from the space-time discretization of time-dependent linear partial differential equations (PDEs). Such matrix equations have been considered, for example, in the context of parallel-in-time integration leading to a class of algorithms called ParaDiag. We develop and analyze two novel approaches for the numerical solution of such equations. Our first approach is based on the observation that the modification of these equations performed by ParaDiag in order to solve them in parallel has low rank. Building upon previous work on low-rank updates of matrix equations, this allows us to make use of tensorized Krylov subspace methods to account for the modification. Our second approach is based on interpolating the solution of the matrix equation from the solutions of several modifications. Both approaches avoid the use of iterative refinement needed by ParaDiag and related space-time approaches in order to attain good accuracy. In turn, our new algorithms have the potential to outperform, sometimes significantly, existing methods. This potential is demonstrated for several different types of PDEs.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01372-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00211-023-01372-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究由时变线性偏微分方程(PDEs)的时空离散化而产生的线性矩阵方程。这样的矩阵方程已经被考虑过,例如,在并行时间积分的背景下,导致了一类称为ParaDiag的算法。我们发展并分析了这类方程数值解的两种新方法。我们的第一种方法是基于观察到ParaDiag为了并行求解这些方程而对这些方程进行的修改具有低秩。在先前关于矩阵方程的低秩更新的工作的基础上,这允许我们使用张张化的Krylov子空间方法来解释修改。我们的第二种方法是基于从几个修正的解中插值矩阵方程的解。这两种方法都避免了使用ParaDiag和相关时空方法所需的迭代细化,以获得良好的精度。反过来,我们的新算法有可能超越现有的方法,有时甚至是显著地超越。这种潜力在几种不同类型的pde中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved ParaDiag via low-rank updates and interpolation

Improved ParaDiag via low-rank updates and interpolation
Abstract This work is concerned with linear matrix equations that arise from the space-time discretization of time-dependent linear partial differential equations (PDEs). Such matrix equations have been considered, for example, in the context of parallel-in-time integration leading to a class of algorithms called ParaDiag. We develop and analyze two novel approaches for the numerical solution of such equations. Our first approach is based on the observation that the modification of these equations performed by ParaDiag in order to solve them in parallel has low rank. Building upon previous work on low-rank updates of matrix equations, this allows us to make use of tensorized Krylov subspace methods to account for the modification. Our second approach is based on interpolating the solution of the matrix equation from the solutions of several modifications. Both approaches avoid the use of iterative refinement needed by ParaDiag and related space-time approaches in order to attain good accuracy. In turn, our new algorithms have the potential to outperform, sometimes significantly, existing methods. This potential is demonstrated for several different types of PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信