{"title":"在O2还原和CO2升高环境下,球石藻钙化与光合作用比值降低","authors":"Shanying Tong, Dong Xu, Hongjin Qiao, Naihao Ye","doi":"10.1139/cjfas-2023-0073","DOIUrl":null,"url":null,"abstract":"We examined the physiological performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, and Gephyrocapsa oceanica, which were treated with 8.3 (AO), 4.6 (MO) and 2.5 (LO) mg L–1 O2 under 400 (AC) and1000 (HC) ppm CO2 conditions. Elevated CO2 decreased the specific growth rate of cells cultured under AO and LO conditions in both species, but it increased the rate in the MO-grown E. huxleyi. Regardless of the CO2 levels, diminished O2 concentration inhibited the growth rate in E. huxleyi while accelerating the rate in G. oceanica. LO reduced the particulate organic carbon (POC) production rate compared to the AO treatment in both species. Additionally, the decrease was higher in the HC cultures than in the AC ones. LO also inhibited the production rate of particulate inorganic carbon (PIC) compared to the AO/AC treatment. Due to a higher reduction in the production rate of PIC than POC, the PIC/POC ratio was decreased in the LO treatment compared to the AO/AC treatment. The current study reveals that low O2 can, individually or in combination with high CO2, considerably affect the physiology of marine photoautotrophic organisms.","PeriodicalId":9515,"journal":{"name":"Canadian Journal of Fisheries and Aquatic Sciences","volume":"13 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decreased calcification to photosynthesis ratio in coccolithophores under reduced O2 and elevated CO2 environment\",\"authors\":\"Shanying Tong, Dong Xu, Hongjin Qiao, Naihao Ye\",\"doi\":\"10.1139/cjfas-2023-0073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined the physiological performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, and Gephyrocapsa oceanica, which were treated with 8.3 (AO), 4.6 (MO) and 2.5 (LO) mg L–1 O2 under 400 (AC) and1000 (HC) ppm CO2 conditions. Elevated CO2 decreased the specific growth rate of cells cultured under AO and LO conditions in both species, but it increased the rate in the MO-grown E. huxleyi. Regardless of the CO2 levels, diminished O2 concentration inhibited the growth rate in E. huxleyi while accelerating the rate in G. oceanica. LO reduced the particulate organic carbon (POC) production rate compared to the AO treatment in both species. Additionally, the decrease was higher in the HC cultures than in the AC ones. LO also inhibited the production rate of particulate inorganic carbon (PIC) compared to the AO/AC treatment. Due to a higher reduction in the production rate of PIC than POC, the PIC/POC ratio was decreased in the LO treatment compared to the AO/AC treatment. The current study reveals that low O2 can, individually or in combination with high CO2, considerably affect the physiology of marine photoautotrophic organisms.\",\"PeriodicalId\":9515,\"journal\":{\"name\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Fisheries and Aquatic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfas-2023-0073\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Fisheries and Aquatic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjfas-2023-0073","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Decreased calcification to photosynthesis ratio in coccolithophores under reduced O2 and elevated CO2 environment
We examined the physiological performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, and Gephyrocapsa oceanica, which were treated with 8.3 (AO), 4.6 (MO) and 2.5 (LO) mg L–1 O2 under 400 (AC) and1000 (HC) ppm CO2 conditions. Elevated CO2 decreased the specific growth rate of cells cultured under AO and LO conditions in both species, but it increased the rate in the MO-grown E. huxleyi. Regardless of the CO2 levels, diminished O2 concentration inhibited the growth rate in E. huxleyi while accelerating the rate in G. oceanica. LO reduced the particulate organic carbon (POC) production rate compared to the AO treatment in both species. Additionally, the decrease was higher in the HC cultures than in the AC ones. LO also inhibited the production rate of particulate inorganic carbon (PIC) compared to the AO/AC treatment. Due to a higher reduction in the production rate of PIC than POC, the PIC/POC ratio was decreased in the LO treatment compared to the AO/AC treatment. The current study reveals that low O2 can, individually or in combination with high CO2, considerably affect the physiology of marine photoautotrophic organisms.
期刊介绍:
The Canadian Journal of Fisheries and Aquatic Sciences is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.