一类二元半群的Ehresmann-Schein-Nambooripad定理

IF 0.7 3区 数学 Q2 MATHEMATICS
Tim Stokes
{"title":"一类二元半群的Ehresmann-Schein-Nambooripad定理","authors":"Tim Stokes","doi":"10.1007/s00233-023-10380-z","DOIUrl":null,"url":null,"abstract":"Abstract We obtain an ESN theorem for a very general class of biunary semigroups with idempotent-valued domain and range operations, representing them in terms of small categories equipped with a suitable biaction of the identities on the category. Our results generalise the recent work of Fitzgerald and Kinyon connecting localisable semigroups to transcription categories, as well as that of Lawson linking Ehresmann semigroups to categories with Ehresmann biaction. In contrast to most approaches to ESN theorems, we do not require the categories to be ordered or for their sets of identities to possess any particular structure. Throughout, the biunary semigroups are represented using categories rather than generalised categories of any kind, and we obtain category isomorphisms between the clesses of semigroups and their associated enriched categories, rather than category equivalences. Our results cover the class of DRC-semigroups considered by Jones and Shoufeng Wang, but they also cover cases where not both congruence conditions hold, including examples such as the semigroup of binary relations on a set under demonic composition equipped with domain and range operations.","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"16 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ehresmann–Schein–Nambooripad theorems for classes of biunary semigroups\",\"authors\":\"Tim Stokes\",\"doi\":\"10.1007/s00233-023-10380-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We obtain an ESN theorem for a very general class of biunary semigroups with idempotent-valued domain and range operations, representing them in terms of small categories equipped with a suitable biaction of the identities on the category. Our results generalise the recent work of Fitzgerald and Kinyon connecting localisable semigroups to transcription categories, as well as that of Lawson linking Ehresmann semigroups to categories with Ehresmann biaction. In contrast to most approaches to ESN theorems, we do not require the categories to be ordered or for their sets of identities to possess any particular structure. Throughout, the biunary semigroups are represented using categories rather than generalised categories of any kind, and we obtain category isomorphisms between the clesses of semigroups and their associated enriched categories, rather than category equivalences. Our results cover the class of DRC-semigroups considered by Jones and Shoufeng Wang, but they also cover cases where not both congruence conditions hold, including examples such as the semigroup of binary relations on a set under demonic composition equipped with domain and range operations.\",\"PeriodicalId\":49549,\"journal\":{\"name\":\"Semigroup Forum\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semigroup Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-023-10380-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semigroup Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00233-023-10380-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于一类非常一般的具有等值域和值域运算的二元半群,我们得到了一个回声状态网络定理,将它们表示为具有合适的双作用的小范畴。我们的结果概括了最近Fitzgerald和Kinyon将可定位半群与转录类别联系起来的工作,以及Lawson将Ehresmann半群与Ehresmann双作用的类别联系起来的工作。与大多数ESN定理的方法相比,我们不要求类别是有序的,也不要求它们的恒等式集具有任何特定的结构。自始至终,二元半群都是用范畴而不是任何种类的广义范畴来表示的,并且我们得到了半群的类与它们相关的丰富范畴之间的范畴同构,而不是范畴等价。我们的结果涵盖了Jones和Wang Shoufeng所考虑的一类drc -半群,但它们也涵盖了不是两个同余条件都成立的情况,包括在具有定义域和值域运算的集合上的二元关系半群的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ehresmann–Schein–Nambooripad theorems for classes of biunary semigroups
Abstract We obtain an ESN theorem for a very general class of biunary semigroups with idempotent-valued domain and range operations, representing them in terms of small categories equipped with a suitable biaction of the identities on the category. Our results generalise the recent work of Fitzgerald and Kinyon connecting localisable semigroups to transcription categories, as well as that of Lawson linking Ehresmann semigroups to categories with Ehresmann biaction. In contrast to most approaches to ESN theorems, we do not require the categories to be ordered or for their sets of identities to possess any particular structure. Throughout, the biunary semigroups are represented using categories rather than generalised categories of any kind, and we obtain category isomorphisms between the clesses of semigroups and their associated enriched categories, rather than category equivalences. Our results cover the class of DRC-semigroups considered by Jones and Shoufeng Wang, but they also cover cases where not both congruence conditions hold, including examples such as the semigroup of binary relations on a set under demonic composition equipped with domain and range operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semigroup Forum
Semigroup Forum 数学-数学
CiteScore
1.50
自引率
14.30%
发文量
79
审稿时长
12 months
期刊介绍: Semigroup Forum is a platform for speedy and efficient transmission of information on current research in semigroup theory. Scope: Algebraic semigroups, topological semigroups, partially ordered semigroups, semigroups of measures and harmonic analysis on semigroups, numerical semigroups, transformation semigroups, semigroups of operators, and applications of semigroup theory to other disciplines such as ring theory, category theory, automata, logic, etc. Languages: English (preferred), French, German, Russian. Survey Articles: Expository, such as a symposium lecture. Of any length. May include original work, but should present the nonspecialist with a reasonably elementary and self-contained account of the fundamental parts of the subject. Research Articles: Will be subject to the usual refereeing procedure. Research Announcements: Description, limited to eight pages, of new results, mostly without proofs, of full length papers appearing elsewhere. The announcement must be accompanied by a copy of the unabridged version. Short Notes: (Maximum 4 pages) Worthy of the readers'' attention, such as new proofs, significant generalizations of known facts, comments on unsolved problems, historical remarks, etc. Research Problems: Unsolved research problems. Announcements: Of conferences, seminars, and symposia on Semigroup Theory. Abstracts and Bibliographical Items: Abstracts in English, limited to one page, of completed work are solicited. Listings of books, papers, and lecture notes previously published elsewhere and, above all, of new papers for which preprints are available are solicited from all authors. Abstracts for Reviewing Journals: Authors are invited to provide with their manuscript informally a one-page abstract of their contribution with key words and phrases and with subject matter classification. This material will be forwarded to Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信