{"title":"扩展k -广义Mittag-Leffler函数及其性质","authors":"Shilpi Jain, B.B. Jaimini, Meenu Buri, Praveen Agarwal","doi":"10.3934/mfc.2023041","DOIUrl":null,"url":null,"abstract":"In this current paper, we are using the concept of extension of the beta function to define an extended $ k $-generalized Mittag-Leffler function (GMLf) $ E_{k, l, m}^{\\rho, \\sigma;c}(x;p) $. There are four sections included in this paper containing some properties of the above-described function, like derivatives, integral representation, and integral transform. The establishment of some recurrence relations has also been done. We also derive the extended $ k $-GMLf from the extended $ k $-Riemann-Liouville (R-L) fractional derivative of generalized MLf. Numerous former results studied by many researchers can also be derived as special cases of our results.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On extended $ k $-generalized Mittag-Leffler function and its properties\",\"authors\":\"Shilpi Jain, B.B. Jaimini, Meenu Buri, Praveen Agarwal\",\"doi\":\"10.3934/mfc.2023041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this current paper, we are using the concept of extension of the beta function to define an extended $ k $-generalized Mittag-Leffler function (GMLf) $ E_{k, l, m}^{\\\\rho, \\\\sigma;c}(x;p) $. There are four sections included in this paper containing some properties of the above-described function, like derivatives, integral representation, and integral transform. The establishment of some recurrence relations has also been done. We also derive the extended $ k $-GMLf from the extended $ k $-Riemann-Liouville (R-L) fractional derivative of generalized MLf. Numerous former results studied by many researchers can also be derived as special cases of our results.\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2023041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2023041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们使用beta函数扩展的概念来定义一个扩展$ k $ -广义Mittag-Leffler函数(GMLf) $ E_{k, l, m}^{\rho, \sigma;c}(x;p) $。本文分四节介绍了上述函数的一些性质,如导数、积分表示和积分变换。并建立了一些递推关系。我们还从广义MLf的扩展的$ k $ -Riemann-Liouville (R-L)分数阶导数中导出了扩展的$ k $ -GMLf。以前许多研究者研究过的许多结果,也可以作为我们研究结果的特殊情况推导出来。
On extended $ k $-generalized Mittag-Leffler function and its properties
In this current paper, we are using the concept of extension of the beta function to define an extended $ k $-generalized Mittag-Leffler function (GMLf) $ E_{k, l, m}^{\rho, \sigma;c}(x;p) $. There are four sections included in this paper containing some properties of the above-described function, like derivatives, integral representation, and integral transform. The establishment of some recurrence relations has also been done. We also derive the extended $ k $-GMLf from the extended $ k $-Riemann-Liouville (R-L) fractional derivative of generalized MLf. Numerous former results studied by many researchers can also be derived as special cases of our results.