基于Hermite展开的动力学Fokker-Planck方程的Galerkin型方法

IF 1 4区 数学 Q1 MATHEMATICS
Benny Avelin, Mingyi Hou, Kaj Nyström
{"title":"基于Hermite展开的动力学Fokker-Planck方程的Galerkin型方法","authors":"Benny Avelin, Mingyi Hou, Kaj Nyström","doi":"10.3934/krm.2023035","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a Galerkin-type approximation, with quantitative error estimates, for weak solutions to the Cauchy problem for kinetic Fokker-Planck equations in the domain $ (0, T) \\times D \\times \\mathbb{R}^d $, where $ D $ is either $ \\mathbb{T}^d $ or $ \\mathbb{R}^d $. Our approach is based on a Hermite expansion in the velocity variable only, with a hyperbolic system that appears as the truncation of the Brinkman hierarchy, as well as ideas from [2] and additional energy-type estimates that we have developed. We also establish the regularity of the solution based on the regularity of the initial data and the source term.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"26 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Galerkin type method for kinetic Fokker-Planck equations based on Hermite expansions\",\"authors\":\"Benny Avelin, Mingyi Hou, Kaj Nyström\",\"doi\":\"10.3934/krm.2023035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a Galerkin-type approximation, with quantitative error estimates, for weak solutions to the Cauchy problem for kinetic Fokker-Planck equations in the domain $ (0, T) \\\\times D \\\\times \\\\mathbb{R}^d $, where $ D $ is either $ \\\\mathbb{T}^d $ or $ \\\\mathbb{R}^d $. Our approach is based on a Hermite expansion in the velocity variable only, with a hyperbolic system that appears as the truncation of the Brinkman hierarchy, as well as ideas from [2] and additional energy-type estimates that we have developed. We also establish the regularity of the solution based on the regularity of the initial data and the source term.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2023035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对动力学Fokker-Planck方程的Cauchy问题在$ (0,T) \乘以D \乘以mathbb{R}^ D $域中的弱解给出了一个带有定量误差估计的galerkin型近似,其中$ D $为$ \mathbb{T}^ D $或$ \mathbb{R}^ D $。我们的方法仅基于速度变量中的Hermite展开,使用双曲系统作为Brinkman层次结构的截断,以及来自[2]的想法和我们开发的额外能量类型估计。我们还根据初始数据和源项的规律性建立了解的规律性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Galerkin type method for kinetic Fokker-Planck equations based on Hermite expansions
In this paper, we develop a Galerkin-type approximation, with quantitative error estimates, for weak solutions to the Cauchy problem for kinetic Fokker-Planck equations in the domain $ (0, T) \times D \times \mathbb{R}^d $, where $ D $ is either $ \mathbb{T}^d $ or $ \mathbb{R}^d $. Our approach is based on a Hermite expansion in the velocity variable only, with a hyperbolic system that appears as the truncation of the Brinkman hierarchy, as well as ideas from [2] and additional energy-type estimates that we have developed. We also establish the regularity of the solution based on the regularity of the initial data and the source term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信