求助PDF
{"title":"一般定义域非自治Choquard方程的超解","authors":"Asadollah Aghajani, Juha Kinnunen","doi":"10.1515/anona-2023-0107","DOIUrl":null,"url":null,"abstract":"Abstract We consider the nonlocal quasilinear elliptic problem: <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>H</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"1.0em\" /> <m:mstyle> <m:mspace width=\"0.1em\" /> <m:mtext>in</m:mtext> <m:mspace width=\"0.1em\" /> </m:mstyle> <m:mspace width=\"0.33em\" /> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:math> -{\\Delta }_{m}u\\left(x)=H\\left(x){(\\left({I}_{\\alpha }* \\left(Qf\\left(u)))\\left(x))}^{\\beta }g\\left(u\\left(x))\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:math> \\Omega is a smooth domain in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\mathbb{R}}}^{N} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>β</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> \\beta \\ge 0 , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> </m:math> {I}_{\\alpha } , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mi>N</m:mi> </m:math> 0\\lt \\alpha \\lt N , stands for the Riesz potential, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f,g:\\left[0,a)\\to \\left[0,\\infty ) , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> </m:math> 0\\lt a\\le \\infty , are monotone nondecreasing functions with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> f\\left(s),g\\left(s)\\gt 0 for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> s\\gt 0 , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>Q</m:mi> <m:mo>:</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> H,Q:\\Omega \\to {\\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> </m:math> f and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g such as <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>u</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {e}^{u},{\\left(1+u)}^{p} , and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {\\left(1-u)}^{-p} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>1</m:mn> </m:math> p\\gt 1 . We also discuss the Liouville-type results in unbounded domains.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supersolutions to nonautonomous Choquard equations in general domains\",\"authors\":\"Asadollah Aghajani, Juha Kinnunen\",\"doi\":\"10.1515/anona-2023-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the nonlocal quasilinear elliptic problem: <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mo>−</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>H</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> <m:mo>*</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\\\"1.0em\\\" /> <m:mstyle> <m:mspace width=\\\"0.1em\\\" /> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.1em\\\" /> </m:mstyle> <m:mspace width=\\\"0.33em\\\" /> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:math> -{\\\\Delta }_{m}u\\\\left(x)=H\\\\left(x){(\\\\left({I}_{\\\\alpha }* \\\\left(Qf\\\\left(u)))\\\\left(x))}^{\\\\beta }g\\\\left(u\\\\left(x))\\\\hspace{1.0em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega , where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:math> \\\\Omega is a smooth domain in <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> {{\\\\mathbb{R}}}^{N} , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>β</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> \\\\beta \\\\ge 0 , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>I</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msub> </m:math> {I}_{\\\\alpha } , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>α</m:mi> <m:mo><</m:mo> <m:mi>N</m:mi> </m:math> 0\\\\lt \\\\alpha \\\\lt N , stands for the Riesz potential, <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> f,g:\\\\left[0,a)\\\\to \\\\left[0,\\\\infty ) , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>∞</m:mi> </m:math> 0\\\\lt a\\\\le \\\\infty , are monotone nondecreasing functions with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> f\\\\left(s),g\\\\left(s)\\\\gt 0 for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>s</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> </m:math> s\\\\gt 0 , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>H</m:mi> <m:mo>,</m:mo> <m:mi>Q</m:mi> <m:mo>:</m:mo> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:math> H,Q:\\\\Omega \\\\to {\\\\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>f</m:mi> </m:math> f and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> g such as <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>u</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {e}^{u},{\\\\left(1+u)}^{p} , and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> {\\\\left(1-u)}^{-p} , <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>1</m:mn> </m:math> p\\\\gt 1 . We also discuss the Liouville-type results in unbounded domains.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0107\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Supersolutions to nonautonomous Choquard equations in general domains
Abstract We consider the nonlocal quasilinear elliptic problem: − Δ m u ( x ) = H ( x ) ( ( I α * ( Q f ( u ) ) ) ( x ) ) β g ( u ( x ) ) in Ω , -{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega , where Ω \Omega is a smooth domain in R N {{\mathbb{R}}}^{N} , β ≥ 0 \beta \ge 0 , I α {I}_{\alpha } , 0 < α < N 0\lt \alpha \lt N , stands for the Riesz potential, f , g : [ 0 , a ) → [ 0 , ∞ ) f,g:\left[0,a)\to \left[0,\infty ) , 0 < a ≤ ∞ 0\lt a\le \infty , are monotone nondecreasing functions with f ( s ) , g ( s ) > 0 f\left(s),g\left(s)\gt 0 for s > 0 s\gt 0 , and H , Q : Ω → R H,Q:\Omega \to {\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities f f and g g such as e u , ( 1 + u ) p {e}^{u},{\left(1+u)}^{p} , and ( 1 − u ) − p {\left(1-u)}^{-p} , p > 1 p\gt 1 . We also discuss the Liouville-type results in unbounded domains.