随机偏微分方程的自适应有限元法

Q3 Mathematics
Boujemâa Achchab, Khalid Bouihat, Abderrezzak El Bouayadi
{"title":"随机偏微分方程的自适应有限元法","authors":"Boujemâa Achchab, Khalid Bouihat, Abderrezzak El Bouayadi","doi":"10.1504/ijmmno.2023.134153","DOIUrl":null,"url":null,"abstract":"In this paper we approximate the solution of the wick stochastic partial differential equation by the affine conforming finite element method. Then we provide a priori and a posteriori error estimations and prove the convergence of the numerical method. In particular, we construct a Galerkin approximation scheme and we derive the local residual based on posteriori error indicator, all the while proving its efficiency and reliability. Finally, two numerical examples are presented and analysed to illustrate the derived theoretical results, the effectiveness of the proposed adaptive algorithm and the good behaviour of the numerical solution and the mesh adaptation strategy used.","PeriodicalId":38699,"journal":{"name":"International Journal of Mathematical Modelling and Numerical Optimisation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive finite element method for wick stochastic partial differential equations\",\"authors\":\"Boujemâa Achchab, Khalid Bouihat, Abderrezzak El Bouayadi\",\"doi\":\"10.1504/ijmmno.2023.134153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we approximate the solution of the wick stochastic partial differential equation by the affine conforming finite element method. Then we provide a priori and a posteriori error estimations and prove the convergence of the numerical method. In particular, we construct a Galerkin approximation scheme and we derive the local residual based on posteriori error indicator, all the while proving its efficiency and reliability. Finally, two numerical examples are presented and analysed to illustrate the derived theoretical results, the effectiveness of the proposed adaptive algorithm and the good behaviour of the numerical solution and the mesh adaptation strategy used.\",\"PeriodicalId\":38699,\"journal\":{\"name\":\"International Journal of Mathematical Modelling and Numerical Optimisation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Modelling and Numerical Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2023.134153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Modelling and Numerical Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2023.134153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文用仿射拟合有限元法逼近了wick随机偏微分方程的解。然后给出了先验和后验误差估计,并证明了数值方法的收敛性。特别地,我们构造了一种Galerkin近似格式,并基于后验误差指标导出了局部残差,同时证明了它的有效性和可靠性。最后,给出了两个数值算例并进行了分析,以说明推导出的理论结果、所提出的自适应算法的有效性以及所采用的数值解和网格自适应策略的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive finite element method for wick stochastic partial differential equations
In this paper we approximate the solution of the wick stochastic partial differential equation by the affine conforming finite element method. Then we provide a priori and a posteriori error estimations and prove the convergence of the numerical method. In particular, we construct a Galerkin approximation scheme and we derive the local residual based on posteriori error indicator, all the while proving its efficiency and reliability. Finally, two numerical examples are presented and analysed to illustrate the derived theoretical results, the effectiveness of the proposed adaptive algorithm and the good behaviour of the numerical solution and the mesh adaptation strategy used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信