~ 200和250质量区复合核裂变中子多重度的统计模型分析

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
{"title":"~ 200和250质量区复合核裂变中子多重度的统计模型分析","authors":"","doi":"10.56042/ijpap.v61i11.2609","DOIUrl":null,"url":null,"abstract":"Statistical model analysis has been performed with and without the inclusion of shell correction in level density and the collective enhancement of level density (CELD) effect for two different mass regions of compound nuclei, i.e., ~ 200 and 250 for the currently available data of neutron multiplicity (Mpre) in the literature in both mass regions. The chosen reactions have comparable excitation energy range. The measured neutron multiplicities are found to be increasing with the excitation energy of the compound nuclei for all the studied reactions except for 19F + 184W. The calculated values of pre-scission neutron multiplicities are found to be significantly underestimated when compared to the experimental values for overlapping excitation energy range for both mass regions and found to be further underestimated in the heavier mass region (ACN ~ 250) as compared to the relatively lighter mass region (ACN ~ 200). The dissipation strength required to reproduce experimental values is found to increase with an increase in excitation energy of the compound nucleus in both the mass regions. Dissipation strength was found to be higher when the effects of shell correction in level density and CELD were included as compared to the dissipation obtained without incorporating these effects.","PeriodicalId":13509,"journal":{"name":"Indian Journal of Pure & Applied Physics","volume":"39 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Model Analysis of Neutron Multiplicities from Fission of Compound Nuclei in ~ 200 and 250 Mass Region\",\"authors\":\"\",\"doi\":\"10.56042/ijpap.v61i11.2609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical model analysis has been performed with and without the inclusion of shell correction in level density and the collective enhancement of level density (CELD) effect for two different mass regions of compound nuclei, i.e., ~ 200 and 250 for the currently available data of neutron multiplicity (Mpre) in the literature in both mass regions. The chosen reactions have comparable excitation energy range. The measured neutron multiplicities are found to be increasing with the excitation energy of the compound nuclei for all the studied reactions except for 19F + 184W. The calculated values of pre-scission neutron multiplicities are found to be significantly underestimated when compared to the experimental values for overlapping excitation energy range for both mass regions and found to be further underestimated in the heavier mass region (ACN ~ 250) as compared to the relatively lighter mass region (ACN ~ 200). The dissipation strength required to reproduce experimental values is found to increase with an increase in excitation energy of the compound nucleus in both the mass regions. Dissipation strength was found to be higher when the effects of shell correction in level density and CELD were included as compared to the dissipation obtained without incorporating these effects.\",\"PeriodicalId\":13509,\"journal\":{\"name\":\"Indian Journal of Pure & Applied Physics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure & Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56042/ijpap.v61i11.2609\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i11.2609","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对现有文献中两个质量区的中子多重率(Mpre)数据,分别在~ 200和250两个不同质量区的复合核进行了统计模型分析,分别考虑了能级密度的壳层修正和能级密度的集体增强(CELD)效应。所选的反应具有相似的激发能范围。除了19F + 184W外,测量到的中子多重度随化合物核激发能的增加而增加。与两个质量区域重叠激发能范围的实验值相比,裂变前中子多重度的计算值被明显低估,并且在较重质量区域(ACN ~ 250)与相对较轻质量区域(ACN ~ 200)相比,被进一步低估。在两个质量区,复现实验值所需的耗散强度随复合核激发能的增加而增加。与不考虑这些影响的耗散强度相比,当考虑水平密度和CELD的壳修正影响时,耗散强度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Model Analysis of Neutron Multiplicities from Fission of Compound Nuclei in ~ 200 and 250 Mass Region
Statistical model analysis has been performed with and without the inclusion of shell correction in level density and the collective enhancement of level density (CELD) effect for two different mass regions of compound nuclei, i.e., ~ 200 and 250 for the currently available data of neutron multiplicity (Mpre) in the literature in both mass regions. The chosen reactions have comparable excitation energy range. The measured neutron multiplicities are found to be increasing with the excitation energy of the compound nuclei for all the studied reactions except for 19F + 184W. The calculated values of pre-scission neutron multiplicities are found to be significantly underestimated when compared to the experimental values for overlapping excitation energy range for both mass regions and found to be further underestimated in the heavier mass region (ACN ~ 250) as compared to the relatively lighter mass region (ACN ~ 200). The dissipation strength required to reproduce experimental values is found to increase with an increase in excitation energy of the compound nucleus in both the mass regions. Dissipation strength was found to be higher when the effects of shell correction in level density and CELD were included as compared to the dissipation obtained without incorporating these effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
7 months
期刊介绍: Started in 1963, this journal publishes Original Research Contribution as full papers, notes and reviews on classical and quantum physics, relativity and gravitation; statistical physics and thermodynamics; specific instrumentation and techniques of general use in physics, elementary particles and fields, nuclear physics, atomic and molecular physics, fundamental area of phenomenology, optics, acoustics and fluid dynamics, plasmas and electric discharges, condensed matter-structural, mechanical and thermal properties, electronic, structure, electrical, magnetic and optical properties, cross-disciplinary physics and related areas of science and technology, geophysics, astrophysics and astronomy. It also includes latest findings in the subject under News Scan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信