Catherine Mollart, Bartosz Ciborowski and Abbie Trewin
{"title":"共轭微孔聚合物的中尺度人工合成","authors":"Catherine Mollart, Bartosz Ciborowski and Abbie Trewin","doi":"10.1039/D3ME00130J","DOIUrl":null,"url":null,"abstract":"<p >This work reports the mesoscale artificial synthesis of a conjugated microporous polymer, CMP-1, using a hybrid coarse-grained methodology. Whilst using a coarse grain approach does give a lower density and surface area when compared to the all-atom equivalent, this allowed a simulation cell volume scale-up of up to 64 times, and an overall speed-up factor of 44% when compared to the all-atom equivalent.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1456-1461"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/me/d3me00130j?page=search","citationCount":"0","resultStr":"{\"title\":\"Mesoscale artificial synthesis of conjugated microporous polymers†\",\"authors\":\"Catherine Mollart, Bartosz Ciborowski and Abbie Trewin\",\"doi\":\"10.1039/D3ME00130J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work reports the mesoscale artificial synthesis of a conjugated microporous polymer, CMP-1, using a hybrid coarse-grained methodology. Whilst using a coarse grain approach does give a lower density and surface area when compared to the all-atom equivalent, this allowed a simulation cell volume scale-up of up to 64 times, and an overall speed-up factor of 44% when compared to the all-atom equivalent.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 12\",\"pages\":\" 1456-1461\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/me/d3me00130j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/me/d3me00130j\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d3me00130j","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mesoscale artificial synthesis of conjugated microporous polymers†
This work reports the mesoscale artificial synthesis of a conjugated microporous polymer, CMP-1, using a hybrid coarse-grained methodology. Whilst using a coarse grain approach does give a lower density and surface area when compared to the all-atom equivalent, this allowed a simulation cell volume scale-up of up to 64 times, and an overall speed-up factor of 44% when compared to the all-atom equivalent.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.