2019年土耳其空气污染导致的慢性阻塞性肺病和肺癌死亡率

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Didem Han Yekdeş, Ali Cem Yekdeş, Ülfiye Çelikkalp, Pelin Sarı Serin, Miraç Çağlayan, Galip Ekuklu
{"title":"2019年土耳其空气污染导致的慢性阻塞性肺病和肺癌死亡率","authors":"Didem Han Yekdeş, Ali Cem Yekdeş, Ülfiye Çelikkalp, Pelin Sarı Serin, Miraç Çağlayan, Galip Ekuklu","doi":"10.4209/aaqr.230144","DOIUrl":null,"url":null,"abstract":"Approximately seven million premature deaths occured due to several health problems caused by air pollution. In this study, we aimed to calculate the mortality rates of lung cancer and Chronic Obstructive Pulmonary Disease (COPD) attributed to PM2.5 in Türkiye in 2019. The universe of the research consists of the entire Türkiye region. Air quality data was obtained from the official website of the Ministry of Environment, Urbanization and Climate Change of the Republic of Türkiye. Lung cancer and COPD mortality data were collected from the official website of the Turkish Statistical Institute by a special request. Mortality rates attributed to PM2.5 were calculated with the WHO AIRQ+ program, and the monthly percent change (MPC) in air pollution level was computed by the JP regression method. The annual average values of PM2.5 and PM10 for 2019 in Türkiye were calculated to be 28.82 µg m-3 and 48.08 µg m-3, respectively. The mortality rate attributed to PM2.5 for lung cancer is 15% whereas the mortality rate attributed to PM2.5 for COPD is 22%. Except two Nomenclature d'Unités Territoriales Statistiques (NUTS) regions (TR1, TR7) all other regions have statisitcally significant one joinpoint. As a conclusion, the PM2.5 average values for 2019 in Türkiye are over the limits for both the national legislation and the World Health Organization (WHO). Taking precautions to control air pollution sources and determination of legitinate national PM2.5 limits should be prioritized. Thus, one out of every six deaths from lung cancer and one out of every five deaths from COPD can be prevented.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"35 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic Obstructive Pulmonary Disease and Lung Cancer Mortality Attributed to Air Pollution in Turkey in 2019\",\"authors\":\"Didem Han Yekdeş, Ali Cem Yekdeş, Ülfiye Çelikkalp, Pelin Sarı Serin, Miraç Çağlayan, Galip Ekuklu\",\"doi\":\"10.4209/aaqr.230144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximately seven million premature deaths occured due to several health problems caused by air pollution. In this study, we aimed to calculate the mortality rates of lung cancer and Chronic Obstructive Pulmonary Disease (COPD) attributed to PM2.5 in Türkiye in 2019. The universe of the research consists of the entire Türkiye region. Air quality data was obtained from the official website of the Ministry of Environment, Urbanization and Climate Change of the Republic of Türkiye. Lung cancer and COPD mortality data were collected from the official website of the Turkish Statistical Institute by a special request. Mortality rates attributed to PM2.5 were calculated with the WHO AIRQ+ program, and the monthly percent change (MPC) in air pollution level was computed by the JP regression method. The annual average values of PM2.5 and PM10 for 2019 in Türkiye were calculated to be 28.82 µg m-3 and 48.08 µg m-3, respectively. The mortality rate attributed to PM2.5 for lung cancer is 15% whereas the mortality rate attributed to PM2.5 for COPD is 22%. Except two Nomenclature d'Unités Territoriales Statistiques (NUTS) regions (TR1, TR7) all other regions have statisitcally significant one joinpoint. As a conclusion, the PM2.5 average values for 2019 in Türkiye are over the limits for both the national legislation and the World Health Organization (WHO). Taking precautions to control air pollution sources and determination of legitinate national PM2.5 limits should be prioritized. Thus, one out of every six deaths from lung cancer and one out of every five deaths from COPD can be prevented.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.230144\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4209/aaqr.230144","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于空气污染造成的若干健康问题,大约有700万人过早死亡。在这项研究中,我们的目的是计算2019年中国PM2.5导致的肺癌和慢性阻塞性肺疾病(COPD)的死亡率。研究范围包括整个 rkiye地区。空气质量数据来自基耶共和国环境、城市化和气候变化部官方网站。应特殊要求,从土耳其统计研究所的官方网站收集肺癌和COPD死亡率数据。采用WHO AIRQ+程序计算PM2.5所致死亡率,采用JP回归法计算空气污染水平的月变化百分比(MPC)。计算得出2019年全市PM2.5和PM10年平均值分别为28.82µg m-3和48.08µg m-3。PM2.5导致肺癌的死亡率为15%,而PM2.5导致COPD的死亡率为22%。除了两个区域(TR1, TR7)外,所有其他区域都有一个统计上显著的连接点。结论是,2019年新西兰PM2.5平均值超过了国家立法和世界卫生组织(世卫组织)的限制。重点防控大气污染源,制定PM2.5国家限值。因此,六分之一的肺癌死亡和五分之一的慢性阻塞性肺病死亡是可以预防的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chronic Obstructive Pulmonary Disease and Lung Cancer Mortality Attributed to Air Pollution in Turkey in 2019
Approximately seven million premature deaths occured due to several health problems caused by air pollution. In this study, we aimed to calculate the mortality rates of lung cancer and Chronic Obstructive Pulmonary Disease (COPD) attributed to PM2.5 in Türkiye in 2019. The universe of the research consists of the entire Türkiye region. Air quality data was obtained from the official website of the Ministry of Environment, Urbanization and Climate Change of the Republic of Türkiye. Lung cancer and COPD mortality data were collected from the official website of the Turkish Statistical Institute by a special request. Mortality rates attributed to PM2.5 were calculated with the WHO AIRQ+ program, and the monthly percent change (MPC) in air pollution level was computed by the JP regression method. The annual average values of PM2.5 and PM10 for 2019 in Türkiye were calculated to be 28.82 µg m-3 and 48.08 µg m-3, respectively. The mortality rate attributed to PM2.5 for lung cancer is 15% whereas the mortality rate attributed to PM2.5 for COPD is 22%. Except two Nomenclature d'Unités Territoriales Statistiques (NUTS) regions (TR1, TR7) all other regions have statisitcally significant one joinpoint. As a conclusion, the PM2.5 average values for 2019 in Türkiye are over the limits for both the national legislation and the World Health Organization (WHO). Taking precautions to control air pollution sources and determination of legitinate national PM2.5 limits should be prioritized. Thus, one out of every six deaths from lung cancer and one out of every five deaths from COPD can be prevented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol and Air Quality Research
Aerosol and Air Quality Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
10.00%
发文量
163
审稿时长
3 months
期刊介绍: The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including: - Aerosol, air quality, atmospheric chemistry and global change; - Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure; - Nanoparticle and nanotechnology; - Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis; - Effects on the environments; - Air quality and human health; - Bioaerosols; - Indoor air quality; - Energy and air pollution; - Pollution control technologies; - Invention and improvement of sampling instruments and technologies; - Optical/radiative properties and remote sensing; - Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission; - Other topics related to aerosol and air quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信