{"title":"分布的正则化","authors":"Aleksandr Leonidovich Pavlov","doi":"10.4213/sm9803e","DOIUrl":null,"url":null,"abstract":"Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\\sigma)f$, where $f$ is a distribution and $a(\\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization of distributions\",\"authors\":\"Aleksandr Leonidovich Pavlov\",\"doi\":\"10.4213/sm9803e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\\\\sigma)f$, where $f$ is a distribution and $a(\\\\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\\\\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9803e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9803e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\sigma)f$, where $f$ is a distribution and $a(\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.