分布的正则化

Pub Date : 2023-01-01 DOI:10.4213/sm9803e
Aleksandr Leonidovich Pavlov
{"title":"分布的正则化","authors":"Aleksandr Leonidovich Pavlov","doi":"10.4213/sm9803e","DOIUrl":null,"url":null,"abstract":"Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\\sigma)f$, where $f$ is a distribution and $a(\\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization of distributions\",\"authors\":\"Aleksandr Leonidovich Pavlov\",\"doi\":\"10.4213/sm9803e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\\\\sigma)f$, where $f$ is a distribution and $a(\\\\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\\\\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9803e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9803e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了构造正则化形式为$a(\sigma)f$的分布的充分条件,其中$f$是一个分布,$a(\sigma)$是一个在$N$上有幂次导数奇点的闭集$N$外的无穷可微函数。考虑了这种正则化在方程$Pu=f$解的有效构造中的应用,其中$P(\sigma)$是一个多项式。参考书目:14篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regularization of distributions
Sufficient conditions are presented for the construction of a regularization of a distribution in the form $a(\sigma)f$, where $f$ is a distribution and $a(\sigma)$ is an infinitely differentiable function outside a closed set $N$ which has power-like singularities of derivatives on $N$. Applications of such regularizations to an effective construction of solutions of the equation $Pu=f$, where $P(\sigma)$ is a polynomial, are considered. Bibliography: 14 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信