一类具有随机扰动的分数阶随机SIRD模型的参数估计

Na NİE, Jun JİANG, Yuqiang FENG
{"title":"一类具有随机扰动的分数阶随机SIRD模型的参数估计","authors":"Na NİE, Jun JİANG, Yuqiang FENG","doi":"10.33401/fujma.1212268","DOIUrl":null,"url":null,"abstract":"The classical SIRD model is extended to the conformable fractional stochastic SIRD model. The differences between the fractional stochastic SIRD model and the integer stochastic SIRD model are analyzed and compared using COVID-19 data from India. The results show that when the order of the fractional stochastic SIRD model is between $[0.93,0.99]$, the root mean square error between the simulated value and the real value of the number of infections is smaller than that of the integer stochastic SIRD model. Then, the maximum likelihood estimation of the parameters of the conformable fractional stochastic SIRD model is carried out, and compared with the maximum likelihood estimation results of the parameters of the integer stochastic SIRD model, It can be seen that the root mean square error of the fractional stochastic SIRD model is smaller when the fractional order is between $[0.93,0.99]$.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Estimation for a Class of Fractional Stochastic SIRD Models with Random Perturbations\",\"authors\":\"Na NİE, Jun JİANG, Yuqiang FENG\",\"doi\":\"10.33401/fujma.1212268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical SIRD model is extended to the conformable fractional stochastic SIRD model. The differences between the fractional stochastic SIRD model and the integer stochastic SIRD model are analyzed and compared using COVID-19 data from India. The results show that when the order of the fractional stochastic SIRD model is between $[0.93,0.99]$, the root mean square error between the simulated value and the real value of the number of infections is smaller than that of the integer stochastic SIRD model. Then, the maximum likelihood estimation of the parameters of the conformable fractional stochastic SIRD model is carried out, and compared with the maximum likelihood estimation results of the parameters of the integer stochastic SIRD model, It can be seen that the root mean square error of the fractional stochastic SIRD model is smaller when the fractional order is between $[0.93,0.99]$.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1212268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1212268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将经典SIRD模型推广为符合分数阶随机SIRD模型。利用印度的COVID-19数据,分析比较了分数型随机SIRD模型与整数型随机SIRD模型的差异。结果表明,当分数阶随机SIRD模型阶数在$[0.93,0.99]$之间时,感染数模拟值与真实值的均方根误差小于整数阶随机SIRD模型的均方根误差。然后,对合规性分数阶随机SIRD模型的参数进行极大似然估计,与整数阶随机SIRD模型参数的极大似然估计结果相比,可以看出分数阶随机SIRD模型在$[0.93,0.99]$之间时均方根误差更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Estimation for a Class of Fractional Stochastic SIRD Models with Random Perturbations
The classical SIRD model is extended to the conformable fractional stochastic SIRD model. The differences between the fractional stochastic SIRD model and the integer stochastic SIRD model are analyzed and compared using COVID-19 data from India. The results show that when the order of the fractional stochastic SIRD model is between $[0.93,0.99]$, the root mean square error between the simulated value and the real value of the number of infections is smaller than that of the integer stochastic SIRD model. Then, the maximum likelihood estimation of the parameters of the conformable fractional stochastic SIRD model is carried out, and compared with the maximum likelihood estimation results of the parameters of the integer stochastic SIRD model, It can be seen that the root mean square error of the fractional stochastic SIRD model is smaller when the fractional order is between $[0.93,0.99]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信