非线性abcd Boussinesq系统高阶紧致有限差分格式的误差估计

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Su-Cheol Yi, Kai Fu, Shusen Xie
{"title":"非线性abcd Boussinesq系统高阶紧致有限差分格式的误差估计","authors":"Su-Cheol Yi, Kai Fu, Shusen Xie","doi":"10.1093/imanum/drad069","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, some fourth-order compact finite difference schemes are derived and analyzed for the nonlinear $abcd$ Boussinesq systems. The optimal order error estimates for the semidiscrete compact finite difference schemes with different cases of dispersion coefficients $a,\\ b,\\ c,\\ d$, are presented. The third-order and fourth-order linearized implicit multistep schemes are adopted for time discretization, and numerical experiments are conducted on the model problems. Numerical results show that the proposed schemes have high accuracy and are consistent with the theoretical analysis.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates of high-order compact finite difference schemes for the nonlinear <i>abcd</i> Boussinesq systems\",\"authors\":\"Su-Cheol Yi, Kai Fu, Shusen Xie\",\"doi\":\"10.1093/imanum/drad069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, some fourth-order compact finite difference schemes are derived and analyzed for the nonlinear $abcd$ Boussinesq systems. The optimal order error estimates for the semidiscrete compact finite difference schemes with different cases of dispersion coefficients $a,\\\\ b,\\\\ c,\\\\ d$, are presented. The third-order and fourth-order linearized implicit multistep schemes are adopted for time discretization, and numerical experiments are conducted on the model problems. Numerical results show that the proposed schemes have high accuracy and are consistent with the theoretical analysis.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad069\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad069","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文导出并分析了一类非线性Boussinesq系统的四阶紧致有限差分格式。给出了具有不同色散系数$a, $ b, $ c, $ d$的半离散紧致有限差分格式的最优阶误差估计。采用三阶和四阶线性化隐式多步格式进行时间离散,并对模型问题进行了数值实验。数值结果表明,所提出的格式具有较高的精度,与理论分析相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates of high-order compact finite difference schemes for the nonlinear abcd Boussinesq systems
Abstract In this paper, some fourth-order compact finite difference schemes are derived and analyzed for the nonlinear $abcd$ Boussinesq systems. The optimal order error estimates for the semidiscrete compact finite difference schemes with different cases of dispersion coefficients $a,\ b,\ c,\ d$, are presented. The third-order and fourth-order linearized implicit multistep schemes are adopted for time discretization, and numerical experiments are conducted on the model problems. Numerical results show that the proposed schemes have high accuracy and are consistent with the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信