修正欧拉法调和均值和三次均值模糊微分方程的数值解

IF 0.6 Q3 MATHEMATICS
Balaji R, Antline Nisha B, Saradha M, R. Udhayakumar
{"title":"修正欧拉法调和均值和三次均值模糊微分方程的数值解","authors":"Balaji R, Antline Nisha B, Saradha M, R. Udhayakumar","doi":"10.37256/cm.4320233393","DOIUrl":null,"url":null,"abstract":"We aimed to solve first-order differential equations using two novel techniques: the harmonic mean and the cubic mean of Euler' s modified approach for fuzzy primary value in this research proposal. We present a new formulation of Euler' s classic approach based on Zadeh' s extension concept to address this dependency issue in a fuzzy situation. In the literature, numerical approaches for solving differential equations with fuzzy main values often disregard this issue. With a few examples, we show how our approach outperforms more traditional fuzzy approaches based on Euler' s method.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"66 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solutions of Fuzzy Differential Equations by Harmonic Mean and Cubic Mean of Modified Euler' s Method\",\"authors\":\"Balaji R, Antline Nisha B, Saradha M, R. Udhayakumar\",\"doi\":\"10.37256/cm.4320233393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aimed to solve first-order differential equations using two novel techniques: the harmonic mean and the cubic mean of Euler' s modified approach for fuzzy primary value in this research proposal. We present a new formulation of Euler' s classic approach based on Zadeh' s extension concept to address this dependency issue in a fuzzy situation. In the literature, numerical approaches for solving differential equations with fuzzy main values often disregard this issue. With a few examples, we show how our approach outperforms more traditional fuzzy approaches based on Euler' s method.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4320233393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4320233393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究拟采用欧拉修正模糊初值法的调和均值和三次均值两种新方法求解一阶微分方程。基于Zadeh的可拓概念,我们提出了一种新的欧拉经典方法的表述,以解决模糊情况下的依赖问题。在文献中,求解模糊主值微分方程的数值方法往往忽略了这个问题。通过几个例子,我们展示了我们的方法如何优于基于欧拉方法的更传统的模糊方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solutions of Fuzzy Differential Equations by Harmonic Mean and Cubic Mean of Modified Euler' s Method
We aimed to solve first-order differential equations using two novel techniques: the harmonic mean and the cubic mean of Euler' s modified approach for fuzzy primary value in this research proposal. We present a new formulation of Euler' s classic approach based on Zadeh' s extension concept to address this dependency issue in a fuzzy situation. In the literature, numerical approaches for solving differential equations with fuzzy main values often disregard this issue. With a few examples, we show how our approach outperforms more traditional fuzzy approaches based on Euler' s method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信