从动力学角度看合理连通光滑射影变的刚性

IF 0.6 3区 数学 Q3 MATHEMATICS
Sheng Meng, Guolei Zhong
{"title":"从动力学角度看合理连通光滑射影变的刚性","authors":"Sheng Meng, Guolei Zhong","doi":"10.4310/mrl.2023.v30.n2.a10","DOIUrl":null,"url":null,"abstract":"Let $X$ be a rationally connected smooth projective variety of dimension $n$. We show that $X$ is a toric variety if and only if $X$ admits an int-amplified endomorphism with totally invariant ramification divisor. We also show that $X\\cong (\\mathbb{P}^1)^{\\times n}$ if and only if $X$ admits a surjective endomorphism $f$ such that the eigenvalues of $f^*|_{\\text{N}^1(X)}$ (without counting multiplicities) are $n$ distinct real numbers greater than $1$.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"190 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Rigidity of rationally connected smooth projective varieties from dynamical viewpoints\",\"authors\":\"Sheng Meng, Guolei Zhong\",\"doi\":\"10.4310/mrl.2023.v30.n2.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be a rationally connected smooth projective variety of dimension $n$. We show that $X$ is a toric variety if and only if $X$ admits an int-amplified endomorphism with totally invariant ramification divisor. We also show that $X\\\\cong (\\\\mathbb{P}^1)^{\\\\times n}$ if and only if $X$ admits a surjective endomorphism $f$ such that the eigenvalues of $f^*|_{\\\\text{N}^1(X)}$ (without counting multiplicities) are $n$ distinct real numbers greater than $1$.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n2.a10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n2.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

设X是维数n的合理连通光滑射影变换。我们证明了$X$是一个环变量当且仅当$X$具有完全不变分支因子的整数放大自同态。我们还证明了$X\cong (\mathbb{P}^1)^{\乘以n}$当且仅当$X$允许满射自同态$f$,使得$f^*|_{\text{n} ^1(X)}$的特征值(不考虑多重性)是大于$1$的$n$不同实数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of rationally connected smooth projective varieties from dynamical viewpoints
Let $X$ be a rationally connected smooth projective variety of dimension $n$. We show that $X$ is a toric variety if and only if $X$ admits an int-amplified endomorphism with totally invariant ramification divisor. We also show that $X\cong (\mathbb{P}^1)^{\times n}$ if and only if $X$ admits a surjective endomorphism $f$ such that the eigenvalues of $f^*|_{\text{N}^1(X)}$ (without counting multiplicities) are $n$ distinct real numbers greater than $1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信