{"title":"关于有序群的半有界展开","authors":"Pantelis E. Eleftheriou, Alex Savatovsky","doi":"10.4064/ba230725-27-9","DOIUrl":null,"url":null,"abstract":"We explore <em>semibounded</em> expansions of arbitrary ordered groups; namely, expansions that do not define a field on the whole universe. We show that if $\\mathcal R=\\langle \\mathbb R, \\lt , +, \\ldots \\rangle $ is a semibounded o-minimal structure and","PeriodicalId":487279,"journal":{"name":"Bulletin of the Polish Academy of Sciences. Mathematics","volume":"30 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On semibounded expansions of ordered groups\",\"authors\":\"Pantelis E. Eleftheriou, Alex Savatovsky\",\"doi\":\"10.4064/ba230725-27-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore <em>semibounded</em> expansions of arbitrary ordered groups; namely, expansions that do not define a field on the whole universe. We show that if $\\\\mathcal R=\\\\langle \\\\mathbb R, \\\\lt , +, \\\\ldots \\\\rangle $ is a semibounded o-minimal structure and\",\"PeriodicalId\":487279,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences. Mathematics\",\"volume\":\"30 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences. Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/ba230725-27-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences. Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/ba230725-27-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We explore semibounded expansions of arbitrary ordered groups; namely, expansions that do not define a field on the whole universe. We show that if $\mathcal R=\langle \mathbb R, \lt , +, \ldots \rangle $ is a semibounded o-minimal structure and