{"title":"阿贝尔网络的本质改进:连续性和一致严格单调性","authors":"Lorenzo Taggi","doi":"10.1214/23-aop1647","DOIUrl":null,"url":null,"abstract":"We prove that in wide generality the critical curve of the activated random walk model is a continuous function of the deactivation rate, and we provide a bound on its slope, which is uniform with respect to the choice of the graph. Moreover, we derive strict monotonicity properties for the probability of a wide class of “increasing” events, extending previous results of (Invent. Math. 188 (2012) 127–150). Our proof method is of independent interest and can be viewed as a reformulation of the ‘essential enhancements’ technique, which was introduced for percolation, in the framework of abelian networks.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Essential enhancements in Abelian networks: Continuity and uniform strict monotonicity\",\"authors\":\"Lorenzo Taggi\",\"doi\":\"10.1214/23-aop1647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that in wide generality the critical curve of the activated random walk model is a continuous function of the deactivation rate, and we provide a bound on its slope, which is uniform with respect to the choice of the graph. Moreover, we derive strict monotonicity properties for the probability of a wide class of “increasing” events, extending previous results of (Invent. Math. 188 (2012) 127–150). Our proof method is of independent interest and can be viewed as a reformulation of the ‘essential enhancements’ technique, which was introduced for percolation, in the framework of abelian networks.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aop1647\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aop1647","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Essential enhancements in Abelian networks: Continuity and uniform strict monotonicity
We prove that in wide generality the critical curve of the activated random walk model is a continuous function of the deactivation rate, and we provide a bound on its slope, which is uniform with respect to the choice of the graph. Moreover, we derive strict monotonicity properties for the probability of a wide class of “increasing” events, extending previous results of (Invent. Math. 188 (2012) 127–150). Our proof method is of independent interest and can be viewed as a reformulation of the ‘essential enhancements’ technique, which was introduced for percolation, in the framework of abelian networks.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.