广义佩尔方程与韦伯类数问题

IF 0.3 4区 数学 Q4 MATHEMATICS
Hyuga Yoshizaki
{"title":"广义佩尔方程与韦伯类数问题","authors":"Hyuga Yoshizaki","doi":"10.5802/jtnb.1249","DOIUrl":null,"url":null,"abstract":"We study a generalization of Pell’s equation, whose coefficients are certain algebraic integers. Let X 0 =0 and X n =2+X n-1 for each n∈ℤ ≥1 . We study the ℤ[X n-1 ]-solutions of the equation x 2 -X n 2 y 2 =1. By imitating the solution to the classical Pell’s equation, we introduce new continued fraction expansions for X n over ℤ[X n-1 ] and obtain an explicit solution of the generalized Pell’s equation. In addition, we show that our explicit solution generates all the solutions if and only if the answer to Weber’s class number problem is affirmative. We also obtain a congruence relation for the ratios of the class numbers of the ℤ 2 -extension over the rationals and show the convergence of the class numbers in ℤ 2 .","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"107 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Pell’s equations and Weber’s class number problem\",\"authors\":\"Hyuga Yoshizaki\",\"doi\":\"10.5802/jtnb.1249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a generalization of Pell’s equation, whose coefficients are certain algebraic integers. Let X 0 =0 and X n =2+X n-1 for each n∈ℤ ≥1 . We study the ℤ[X n-1 ]-solutions of the equation x 2 -X n 2 y 2 =1. By imitating the solution to the classical Pell’s equation, we introduce new continued fraction expansions for X n over ℤ[X n-1 ] and obtain an explicit solution of the generalized Pell’s equation. In addition, we show that our explicit solution generates all the solutions if and only if the answer to Weber’s class number problem is affirmative. We also obtain a congruence relation for the ratios of the class numbers of the ℤ 2 -extension over the rationals and show the convergence of the class numbers in ℤ 2 .\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1249\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1249","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了系数为若干代数整数的Pell方程的推广。令每个n∈n≥1,X 0 =0, X n =2+X n-1。研究了方程x2 - xn2y2 =1的n [X n-1]-解。通过模拟经典Pell’s方程的解,引入了X n / n [X n-1]的新的连分式展开式,得到了广义Pell’s方程的显式解。此外,我们证明了当且仅当韦伯的类数问题的答案是肯定的,我们的显式解产生所有的解。我们还得到了素数在素数上扩展的类数之比的一个同余关系,并证明了素数在素数上的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Pell’s equations and Weber’s class number problem
We study a generalization of Pell’s equation, whose coefficients are certain algebraic integers. Let X 0 =0 and X n =2+X n-1 for each n∈ℤ ≥1 . We study the ℤ[X n-1 ]-solutions of the equation x 2 -X n 2 y 2 =1. By imitating the solution to the classical Pell’s equation, we introduce new continued fraction expansions for X n over ℤ[X n-1 ] and obtain an explicit solution of the generalized Pell’s equation. In addition, we show that our explicit solution generates all the solutions if and only if the answer to Weber’s class number problem is affirmative. We also obtain a congruence relation for the ratios of the class numbers of the ℤ 2 -extension over the rationals and show the convergence of the class numbers in ℤ 2 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信