{"title":"广义佩尔方程与韦伯类数问题","authors":"Hyuga Yoshizaki","doi":"10.5802/jtnb.1249","DOIUrl":null,"url":null,"abstract":"We study a generalization of Pell’s equation, whose coefficients are certain algebraic integers. Let X 0 =0 and X n =2+X n-1 for each n∈ℤ ≥1 . We study the ℤ[X n-1 ]-solutions of the equation x 2 -X n 2 y 2 =1. By imitating the solution to the classical Pell’s equation, we introduce new continued fraction expansions for X n over ℤ[X n-1 ] and obtain an explicit solution of the generalized Pell’s equation. In addition, we show that our explicit solution generates all the solutions if and only if the answer to Weber’s class number problem is affirmative. We also obtain a congruence relation for the ratios of the class numbers of the ℤ 2 -extension over the rationals and show the convergence of the class numbers in ℤ 2 .","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"107 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Pell’s equations and Weber’s class number problem\",\"authors\":\"Hyuga Yoshizaki\",\"doi\":\"10.5802/jtnb.1249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a generalization of Pell’s equation, whose coefficients are certain algebraic integers. Let X 0 =0 and X n =2+X n-1 for each n∈ℤ ≥1 . We study the ℤ[X n-1 ]-solutions of the equation x 2 -X n 2 y 2 =1. By imitating the solution to the classical Pell’s equation, we introduce new continued fraction expansions for X n over ℤ[X n-1 ] and obtain an explicit solution of the generalized Pell’s equation. In addition, we show that our explicit solution generates all the solutions if and only if the answer to Weber’s class number problem is affirmative. We also obtain a congruence relation for the ratios of the class numbers of the ℤ 2 -extension over the rationals and show the convergence of the class numbers in ℤ 2 .\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1249\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1249","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
研究了系数为若干代数整数的Pell方程的推广。令每个n∈n≥1,X 0 =0, X n =2+X n-1。研究了方程x2 - xn2y2 =1的n [X n-1]-解。通过模拟经典Pell’s方程的解,引入了X n / n [X n-1]的新的连分式展开式,得到了广义Pell’s方程的显式解。此外,我们证明了当且仅当韦伯的类数问题的答案是肯定的,我们的显式解产生所有的解。我们还得到了素数在素数上扩展的类数之比的一个同余关系,并证明了素数在素数上的收敛性。
Generalized Pell’s equations and Weber’s class number problem
We study a generalization of Pell’s equation, whose coefficients are certain algebraic integers. Let X 0 =0 and X n =2+X n-1 for each n∈ℤ ≥1 . We study the ℤ[X n-1 ]-solutions of the equation x 2 -X n 2 y 2 =1. By imitating the solution to the classical Pell’s equation, we introduce new continued fraction expansions for X n over ℤ[X n-1 ] and obtain an explicit solution of the generalized Pell’s equation. In addition, we show that our explicit solution generates all the solutions if and only if the answer to Weber’s class number problem is affirmative. We also obtain a congruence relation for the ratios of the class numbers of the ℤ 2 -extension over the rationals and show the convergence of the class numbers in ℤ 2 .