Michael A. Bennett, Philippe Michaud-Jacobs, Samir Siksek
{"title":"π曲线和Lebesgue-Nagell方程","authors":"Michael A. Bennett, Philippe Michaud-Jacobs, Samir Siksek","doi":"10.5802/jtnb.1254","DOIUrl":null,"url":null,"abstract":"for integers x,q,k,y and n, with k≥0 and n≥3. We extend work of the first and third-named authors by finding all solutions in the cases q=41 and q=97. We do this by constructing a Frey–Hellegouarch ℚ-curve defined over the real quadratic field K=ℚ(q), and using the modular method with multi-Frey techniques.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"107 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ℚ-curves and the Lebesgue–Nagell equation\",\"authors\":\"Michael A. Bennett, Philippe Michaud-Jacobs, Samir Siksek\",\"doi\":\"10.5802/jtnb.1254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"for integers x,q,k,y and n, with k≥0 and n≥3. We extend work of the first and third-named authors by finding all solutions in the cases q=41 and q=97. We do this by constructing a Frey–Hellegouarch ℚ-curve defined over the real quadratic field K=ℚ(q), and using the modular method with multi-Frey techniques.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1254\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jtnb.1254","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
for integers x,q,k,y and n, with k≥0 and n≥3. We extend work of the first and third-named authors by finding all solutions in the cases q=41 and q=97. We do this by constructing a Frey–Hellegouarch ℚ-curve defined over the real quadratic field K=ℚ(q), and using the modular method with multi-Frey techniques.