Pedro Parra-Rivas, Alan R. Champneys, Fahad Al Saadi, Damia Gomila, Edgar Knobloch
{"title":"空间定域结构在Codimension-Three Cusp-Turing分岔附近的组织","authors":"Pedro Parra-Rivas, Alan R. Champneys, Fahad Al Saadi, Damia Gomila, Edgar Knobloch","doi":"10.1137/22m1514234","DOIUrl":null,"url":null,"abstract":"A wide variety of stationary or moving spatially localized structures is present in evolution problems on unbounded domains, governed by higher-than-second-order reversible spatial interactions. This work provides a generic unfolding in one spatial dimension of a certain codimension-three singularity that explains the organization of bifurcation diagrams of such localized states in a variety of contexts, ranging from nonlinear optics to fluid mechanics, mathematical biology, and beyond. The singularity occurs when a cusp bifurcation associated with the onset of bistability between homogeneous steady states encounters a pattern-forming, or Turing, bifurcation. The latter corresponds to a Hamiltonian-Hopf point of the corresponding spatial dynamics problem. Such codimension-three points are sometimes called Lifshitz points in the physics literature. In the simplest case where the spatial system conserves a first integral, the system is described by a canonical fourth-order scalar system. The problem contains three small parameters: two that unfold the cusp bifurcation and one that unfolds the Turing bifurcation. Several cases are revealed, depending on open conditions on the signs of the lowest-order nonlinear terms. Taking the case in which the Turing bifurcation is subcritical, various parameter regimes are considered and the bifurcation diagrams of localized structures are elucidated. A rich bifurcation structure is revealed which involves transitions between regions of localized periodic patterns generated by standard homoclinic snaking, and regions of stationary domains of one homogeneous solution embedded in the other organized in a collapsed snaking structure. The theory is shown to unify previous numerical results obtained in models arising in nonlinear optics, fluid mechanics, and excitable media more generally.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"37 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Organization of Spatially Localized Structures near a Codimension-Three Cusp-Turing Bifurcation\",\"authors\":\"Pedro Parra-Rivas, Alan R. Champneys, Fahad Al Saadi, Damia Gomila, Edgar Knobloch\",\"doi\":\"10.1137/22m1514234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide variety of stationary or moving spatially localized structures is present in evolution problems on unbounded domains, governed by higher-than-second-order reversible spatial interactions. This work provides a generic unfolding in one spatial dimension of a certain codimension-three singularity that explains the organization of bifurcation diagrams of such localized states in a variety of contexts, ranging from nonlinear optics to fluid mechanics, mathematical biology, and beyond. The singularity occurs when a cusp bifurcation associated with the onset of bistability between homogeneous steady states encounters a pattern-forming, or Turing, bifurcation. The latter corresponds to a Hamiltonian-Hopf point of the corresponding spatial dynamics problem. Such codimension-three points are sometimes called Lifshitz points in the physics literature. In the simplest case where the spatial system conserves a first integral, the system is described by a canonical fourth-order scalar system. The problem contains three small parameters: two that unfold the cusp bifurcation and one that unfolds the Turing bifurcation. Several cases are revealed, depending on open conditions on the signs of the lowest-order nonlinear terms. Taking the case in which the Turing bifurcation is subcritical, various parameter regimes are considered and the bifurcation diagrams of localized structures are elucidated. A rich bifurcation structure is revealed which involves transitions between regions of localized periodic patterns generated by standard homoclinic snaking, and regions of stationary domains of one homogeneous solution embedded in the other organized in a collapsed snaking structure. The theory is shown to unify previous numerical results obtained in models arising in nonlinear optics, fluid mechanics, and excitable media more generally.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1514234\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1514234","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Organization of Spatially Localized Structures near a Codimension-Three Cusp-Turing Bifurcation
A wide variety of stationary or moving spatially localized structures is present in evolution problems on unbounded domains, governed by higher-than-second-order reversible spatial interactions. This work provides a generic unfolding in one spatial dimension of a certain codimension-three singularity that explains the organization of bifurcation diagrams of such localized states in a variety of contexts, ranging from nonlinear optics to fluid mechanics, mathematical biology, and beyond. The singularity occurs when a cusp bifurcation associated with the onset of bistability between homogeneous steady states encounters a pattern-forming, or Turing, bifurcation. The latter corresponds to a Hamiltonian-Hopf point of the corresponding spatial dynamics problem. Such codimension-three points are sometimes called Lifshitz points in the physics literature. In the simplest case where the spatial system conserves a first integral, the system is described by a canonical fourth-order scalar system. The problem contains three small parameters: two that unfold the cusp bifurcation and one that unfolds the Turing bifurcation. Several cases are revealed, depending on open conditions on the signs of the lowest-order nonlinear terms. Taking the case in which the Turing bifurcation is subcritical, various parameter regimes are considered and the bifurcation diagrams of localized structures are elucidated. A rich bifurcation structure is revealed which involves transitions between regions of localized periodic patterns generated by standard homoclinic snaking, and regions of stationary domains of one homogeneous solution embedded in the other organized in a collapsed snaking structure. The theory is shown to unify previous numerical results obtained in models arising in nonlinear optics, fluid mechanics, and excitable media more generally.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.