Byeongwoo Kim, Tae-Kyung Hong, Junhyung Lee, Seongjun Park, Jeongin Lee
{"title":"韩国首尔的潜在地震危险:地质、地震和地球物理野外观测、历史地震和强地面运动的综合分析","authors":"Byeongwoo Kim, Tae-Kyung Hong, Junhyung Lee, Seongjun Park, Jeongin Lee","doi":"10.1785/0120230015","DOIUrl":null,"url":null,"abstract":"ABSTRACT A series of moderate-size (Mw 4.0–6.0) earthquakes occurred in South Korea after the 2011 Mw 9.0 Tohoku–Oki megathrust earthquake, incurring public concern about possible occurrence of devastating earthquakes in Seoul—the capital city of South Korea, where historical seismic damage was reported. The seismicity is distributed in Seoul, being dominated by strike-slip earthquakes. The fault planes are oriented in north-northeast–south-southwest, which is a favorable direction to respond to the ambient stress field. Higher rates of seismicity are observed in the northwestern Seoul at depths of <10 km. Micro-to-small earthquakes occur episodically in the central Seoul along the Chugaryeong fault system that traverses Seoul in north–south. Seismic, geophysical, and geological properties illuminate the fault structures. Stochastic modeling of ground motions reproduces the seismic damages of historical earthquakes reasonably, supporting the occurrence of devastating historical earthquakes in Seoul. The seismicity distribution, focal mechanism solutions, geological features, and seismic and geophysical properties suggest the possible presence of earthquake-spawning blind faults in Seoul. The peak ground motions are assessed for moderate-size scenario earthquakes (Mw 5.4 with focal depth of 7 km) at six representative subregions in Seoul. The upper bounds of peak ground accelerations reach ∼11 m/s2. The seismic damage potentials for moderate-size earthquakes are high in most areas of Seoul, particularly around river sides covered by alluvium.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"37 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Seismic Hazard in Seoul, South Korea: A Comprehensive Analysis of Geology, Seismic, and Geophysical Field Observations, Historical Earthquakes, and Strong Ground Motions\",\"authors\":\"Byeongwoo Kim, Tae-Kyung Hong, Junhyung Lee, Seongjun Park, Jeongin Lee\",\"doi\":\"10.1785/0120230015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A series of moderate-size (Mw 4.0–6.0) earthquakes occurred in South Korea after the 2011 Mw 9.0 Tohoku–Oki megathrust earthquake, incurring public concern about possible occurrence of devastating earthquakes in Seoul—the capital city of South Korea, where historical seismic damage was reported. The seismicity is distributed in Seoul, being dominated by strike-slip earthquakes. The fault planes are oriented in north-northeast–south-southwest, which is a favorable direction to respond to the ambient stress field. Higher rates of seismicity are observed in the northwestern Seoul at depths of <10 km. Micro-to-small earthquakes occur episodically in the central Seoul along the Chugaryeong fault system that traverses Seoul in north–south. Seismic, geophysical, and geological properties illuminate the fault structures. Stochastic modeling of ground motions reproduces the seismic damages of historical earthquakes reasonably, supporting the occurrence of devastating historical earthquakes in Seoul. The seismicity distribution, focal mechanism solutions, geological features, and seismic and geophysical properties suggest the possible presence of earthquake-spawning blind faults in Seoul. The peak ground motions are assessed for moderate-size scenario earthquakes (Mw 5.4 with focal depth of 7 km) at six representative subregions in Seoul. The upper bounds of peak ground accelerations reach ∼11 m/s2. The seismic damage potentials for moderate-size earthquakes are high in most areas of Seoul, particularly around river sides covered by alluvium.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230015\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230015","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Potential Seismic Hazard in Seoul, South Korea: A Comprehensive Analysis of Geology, Seismic, and Geophysical Field Observations, Historical Earthquakes, and Strong Ground Motions
ABSTRACT A series of moderate-size (Mw 4.0–6.0) earthquakes occurred in South Korea after the 2011 Mw 9.0 Tohoku–Oki megathrust earthquake, incurring public concern about possible occurrence of devastating earthquakes in Seoul—the capital city of South Korea, where historical seismic damage was reported. The seismicity is distributed in Seoul, being dominated by strike-slip earthquakes. The fault planes are oriented in north-northeast–south-southwest, which is a favorable direction to respond to the ambient stress field. Higher rates of seismicity are observed in the northwestern Seoul at depths of <10 km. Micro-to-small earthquakes occur episodically in the central Seoul along the Chugaryeong fault system that traverses Seoul in north–south. Seismic, geophysical, and geological properties illuminate the fault structures. Stochastic modeling of ground motions reproduces the seismic damages of historical earthquakes reasonably, supporting the occurrence of devastating historical earthquakes in Seoul. The seismicity distribution, focal mechanism solutions, geological features, and seismic and geophysical properties suggest the possible presence of earthquake-spawning blind faults in Seoul. The peak ground motions are assessed for moderate-size scenario earthquakes (Mw 5.4 with focal depth of 7 km) at six representative subregions in Seoul. The upper bounds of peak ground accelerations reach ∼11 m/s2. The seismic damage potentials for moderate-size earthquakes are high in most areas of Seoul, particularly around river sides covered by alluvium.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.